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An Introduction to Kernel-Based Learning
Algorithms

Klaus-Robert Miller, Sebastian Mika, Gunnar Réatsch, Koji Tsuda, and Bernhard Schélkopf

Abstract—This paper provides an introduction to support TABLE |

vector machines (SVMs), kernel Fisher discriminant analysis, NOTATION CONVENTIONS USED IN THIS PAPER

and kernel principal component analysis (PCA), as examples 7 counter and mumber of patterns

for successful kernel-based learning methods. We first give @ X ¥ the input space, N = dim(X)

short background about Vapnik—Chervonenkis (VC) theory and x4 a training pattern and the label

kernel feature spaces and then proceed to kernel based learning (x-x’) scalar product between x and x’

in supervised and unsupervised scenarios including practical F feature space

and algorithmic considerations. We illustrate the usefulness of & the mapping & : X — F

kernel algorithms by finally discussing applications such as optical k(-,-)  scalar product in feature space F

character recognition (OCR) and DNA analysis. F; a function class
h the VC dimension of a function class

Index Terms—Boosting, Fisher’s discriminant, kernel methods, d the degree of a polynomial

kernel PCA, mathematical programming machines, Mercer ker- w normal vector of a hyperplane

nels, principal component analysis (PCA), single-class classifica- «: Lagrange multiplier/Expansion coefficient for w

tion, support vector machines (SVMs). & the “slack-variable” for pattern x;
v the quantile parameter (determines the number of outliers)
- 1lp the £p—norm, p € [1, 00]
S number of elements in a set .S

| INTRODUCTION ’G)l The Heaviside function: ©(z) =0 for z < 0, ©(z) = 1 otherwise
I N THE last years, a number of powerful kernel-baser, space of non-negative real numbers
learning machines, e.g., support vector machines (SVMs)

[1]-{6], kernel Fisher discriminant (KFD) [7]-[10], and kernelrom the work of the authors and providing—to the best of our
principal component analysis (KPCA) [11]-[13], have beernowledge—reference to related work for further reading. We
proposed. These approaches have shown practical relevaggge that it nevertheless will be useful for the reader. It dif-
not only for classification and regression problems but alsgyrs from other reviews, such as the ones of [3], [6], [32]-[34],
more recently, in unsupervised learning [11]-{15]. Successiwainly in the choice of the presented material: we place more
applications of kernel-based algorithms have been repori@gphasis on kernel PCA, kernel Fisher discriminants, and on
for various fields, for instance in the context of optical pattergonnections to boosting.

and object recognition [16]-[18], [153], [19]-{20], text cate- e start by presenting some basic concepts of learning theory
gorization [21]-{23], time-series prediction [24], [25], [15],in Section Il. Then we introduce the ideakafinel feature spaces
gene expression profile analysis [26], [27], DNA and proteifsection 1) and the original SVM approach, its implementa-
analysis [28]-[30], and many mote. tion and some variants. Subsequently, we discuss @treel-

The present review introduces the main ideas of kernel a|g§ased methodsr supervised and unsupervised |earning in Sec-
rithms, and reports applications from optical character recogfions IV and V. Some attention will be devoted to questions
tion (OCR) and DNA analysis. We do not attempt a full treaiof model selectior{Section Vi), i.e., how to properly choose
ment of all available literature, rather, we present a somewhat fije parameters in SVMs and other kernel-based approaches. Fi-
ased point of view illustrating the main ideas by drawing mainlyally, we describe several recent and interesting applications in

Section VII and conclude.
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Fig. 1. lllustration of the overfitting dilemma: Given only a small sample (left)
either, the solid or the dashed hypothesis might be true, the dashed one being
more complex, but also having a smaller training error. Only with a large sample
we are able to see which decision reflects the true distribution more closely. If
the dashed hypothesis is correct the solid would underfit (middle); if the solid
were correct the dashed hypothesis would overfit (right).

such thatf will correctly classify unseen examplés, ). An small
example is assigned to the class if f(x) > 0 and to the class

—1 otherwise. The test _exampl_es are assumed to be Qénefﬁ&dz. Schematic illustration of (3). The dotted line represents the training
from the same probability distributioR(x, %) as the training error (empirical risk), the dash-dotted line the upper bound on the complexity

data. The best functiogﬁ that one can obtain is the one minitem (confidence). With higher complexity the empirical error decreases but the
) upper bound on the risk confidence becomes worse. For a certain complexity of

mizing the expected error (risk) the function class the best expected risk (solid line) is obtained. Thus, in practice
the goal is to find the best tradeoff between empirical error and complexity.
Rl = [ 1769, ) PG, ) &)
dimension/ of the function classF that the estimatef is
where [ denotes a suitably chosen loss function, e.gchosen from. Roughly speaking, the VC dimension measures
(f(x),y) = O(—yf(x)), where®(z) = 0 for » < 0 how many (training) points can be shattered (i.e., separated) for
and ©(») = 1 otherwise (the so-called/1-loss). The same all possible labelings using functions of the class. Constructing
framework can be applied for regression problems, wheaenested family of function classds, C --- C [ with
y € R. Here, the most common loss function is tguared nondecreasing VC dimension the SRM principle proceeds as
loss I(f(x),y) = (f(x) — y)? see [35] and [36] for a follows: Let fi, ..., fi be the solutions of the empirical risk
discussion of other loss functions. minimization (2) in the function classek;. SRM chooses
Unfortunately the risk cannot be minimized directly, since thifae function clas¢; (and the functionf;) such that an upper
underlying probability distributiod(x, %) is unknown. There- bound on the generalization error is minimized which can be
fore, we have to try to estimate a function thatleseto the computed making use of theorems such as the following one
optimal one based on the available information, i.e., the trainifigee also Fig. 2).
sample and properties of the function cldshe solutionf is Theorem 1 ([3], [5]): Leth denote the VC dimension of the
chosen from. To this end, we need what is called an inductifunction class/” and letR.,,, be defined by (2) using the 0/1-

principle. A particular simple one consists in approximating thess. For allb > 0 and f € F the inequality bounding the risk
minimum of the risk (1) by the minimum of thempirical risk

2n
¢ h{ln —+1) —1In(6/4)
Rernp[f] = %Z(f(xz)v yz) (2) R[f] < Renlp[f] + < h )

=1

Complexity of Function Set

3)
n
It is possible to give conditions on the learning machine whidtolds with probability of at least — ¢ for n > A.
ensure that asymptotically (as— oc), the empirical risk will Note, this bound is only an example and similar formulations
converge toward the expected risk. However, for small sampgiee available for other loss functions [5] and other complexity
sizes large deviations are possible awerfitting might occur measures, e.g., entropy numbers [45]. Let us discuss (3): the
(see Fig. 1). Then a small generalization error cannot be d®al is to minimize the generalization err&yf], which can
tained by simply minimizing the training error (2). One way tde achieved by obtaining a small training erfay,,,,,[f] while
avoid the overfitting dilemma is teestrict the complexity of keeping the function class as small as possible. Two extremes
the function clasg” that one chooses the functiginfrom [3].  arise for (3): 1) a very small function class (likg) yields a
The intuition, which will be formalized in the following is that avanishing square root term, but a large training error might re-
“simple” (e.g., linear) function that explains most of the data i®ain, while 2) a huge function class (likg.) may give a van-
preferable to a complex one (Occam’s razor). Typically one ifshing empirical error but a large square rootterm. The best class
troduces aegularizationterm (e.g., [37]-[40]) to limit the com- is usually in between (cf. Fig. 2), as one would like to obtain a
plexity of the function clas#' from which the learning machine function that explains the data quite wafidto have a small risk
can choose. This raises the problem of model selection (eig.obtaining that function. This is very much in analogy to the
[39] and [41]-[43)), i.e., how to find the optimal complexity ofbias-variance dilemma scenario described for neural networks
the function (cf. Section VI). (see, e.g., [46]).

A specific way of controlling the complexity of a function . o )
class is given by the Vapnik—Chervonenkis (VC) theory arfat VC Dimension in Practice
the structural risk minimization (SRM) principle [3], [5], [44], Unfortunately in practice the bound on the expected error in
[154]. Here the concept of complexity is captured by the V(3) is often neither easily computable nor very helpful. Typical
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Fig. 4. Two-dimensional classification example. (a) Using the second-order
monomialsz2, v/2 z, , andxZ as features a separation in feature space can be
found using dinear hyperplane. (b) In input space this construction corresponds
to anonlinearellipsoidal decision boundary (figure from [48]).

Fig. 3. Linear classifier and margins: A linear classifier is defined by a

hyperplane’s normal vectow and an offseb, i.e., the decision boundary is . . .

{x|(w - x) + b = 0} (thick line). Each of the two halfspaces defined by thidelow, say by2/A, we can control its VC dimensicnSVMs,

hYPeFP'aff‘e ?Pffesp?”ds,f_to QHth'aS%_iffé?)d_T Sgr((‘f'v . Xi + ). The t twhich we shall treat more closely in Section IV-A, implement
margin or a linear classifer I1s the minimal distance or any training poin P . . . . .
the hyperplane. In this case it is the distance between the dotted lines andﬂ_wé |n'S|ght.. The choice Qf Ilngar functions §eems tobe very lim-
thick line. iting (i.e., instead of being likely to overfit we are now more
likely to underfit). Fortunately there is a way to have both, linear

modelsanda very rich set of nonlinear decision functions, by
problems are that the upper bound on the expected test efol

might be trivial (i.e., larger than one), the VC dimension of the&ng the tools that will be discussed in the next section.
function class is unknown or it is infinite (in which case one
would need an infinite amount of training data). Although there
are different, usually tighter bounds, most of them suffer from Algorithms in feature spaces make use of the following idea:
similar problems. Nevertheless, bounds clearly offer helpfdia a nonlinear mapping

theoretical insights into the nature of learning problems.

I1l. N ONLINEAR ALGORITHMS IN KERNEL FEATURE SPACES

&:RY — F
B. Margins and VC Dimension x — o(x)
N . .
Let us for a moment assume that the training sample is se%ghdata;“ oo Xn IEfR IS map;.z%d :?to a pqtentlelllly m.uch
rable by a hyperplane (see Fig. 3), i.e., we choose functions er dimensional feature space. For a given learning

problem one now considers the same algorithri#imstead of
RY, i.e., one works with the sample

f(X) = (W ) X) + b. (4) ((I)(xl)v y1)7 ) ((I)(Xn)v yn) € FxY.

the form

It was shown (e.g., [3], [44], [154]) that for the class of hyperGiven this mapped representatiosiepleclassification or re-
planes the VC dimension itself can be bounded in terms of ggiession inF is to be found. This is also implicitly done for
other quantity, thenargin (also Fig. 3). The margin is defined (one hidden layer) neural networks, radial basis networks (e.g.,
as the minimal distance of a sample to the decision surface. TA8]-[52]) or boosting algorithms [53] where the input data is
margin in turn can be measured by the length of the weigftapped to some representation given by the hidden layer, the
vectorw in (4): as we assumed that the training sample is segadial basis function (RBF) bumps or the hypotheses space, re-
rable we can rescale andb such that the points closest to thespectively.
hyperplane satisfi(w - x;) + 0| = 1 (i.e., obtain the so-called ~ The so-callecturse of dimensionalitrom statistics says es-
canonical representation of the hyperplane). Now consider t&@ntially that the difficulty of an estimation problem increases
samplest; andx, from different classes withw - x;) +b = 1  drastically with the dimensiotV of the space, since—in prin-
and(w - x2) + b = —1, respectively. Then the margin is giverciple—as a function ofV one needs exponentially many pat-
by the distance of these two points, measured perpendiculatats to sample the space properly. This well-known statement
the hyperplane, i.ew/||w|| - (x; — x2) = 2/||w]|. The result induces some doubts about whether it is a good idea to go to a
linking the VC dimension of the class of separating hyperplanbigh-dimensional feature space for learning.
to the margin or the length of the weight vecterrespectively ~ However, statistical learning theory tells us that the contrary
is given by the following inequalities: can be true: learning i can be simpler if one uses a low com-
plexity, i.e.,simpleclass of decision rules (e.g., linear classi-
fiers). All the variability and richness that one needs to have a

52 powerful function class is then introduced by the mapping
R<A’RP+1 and |wl2< A (5)
2There are some ramifications to this statement, that go beyond the scope
. . of this work. Strictly speaking, VC theory requires the structure to be defined
whereR is the radius of the smallest ball around the data (€.G. yriori, which has implications for the definition of the class of separating

[3]). Thus, if we bound the margin of a function class fronmayperplanes, cf. [47].
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In short: not the dimensionality but the complexity of the func- In this case
tion class matters [3]. Intuitively, this idea can be understood
from the toy example in Fig. 4: in two dimensions a rather com- o(x) = (\/ AL 1(x), VA2 P2(x), .. )

plicatednonlineardecision surface is necessary to separate the . o
classes, whereas in a feature space of second-order monomials 1S @ possible realization.

(see, e.g., [54]) * Note furthermore that using a particular SV kernel corre-
sponds to anmplicit choice of a regularization operator
®:R? — R3 (cf. [39] and [57]). For translation invariant kernels, the
(1, 22) = (21, 79, 23) 1= (JC% V21w, a:%) (6) _regulari.zation pro.perties can be expresse.d conveniently
in Fourier space in terms of the frequencies [58], [60].
all one needs for separation ifirear hyperplane. In this simple For example, Gaussian kernels (7) correspond to a general

toy example, we can easily control both: the statistical com- smoothness assumption in &th-order derivatives [58].
plexity (by using a simple linear hyperplane classifier) and the  Vice versa using this correspondence, kernels matching a
algorithmic complexity of the learning machine, as the feature  certain prior about the frequency content of the data can
space is only three dimensional. However, it becomes rather be constructed that reflect our prior problem knowledge.
tricky to control the latter for large real-world problems. For Table Il lists some of the most widely used kernel functions.
instance, consider images of 26 16 pixels as patterns andMore sophisticated kernels (e.g., kernels generating splines or
fifth-order monomials as mappir—then one would map to a Fourier expansions) can be found in [4], [5], [28], [30], [36],
space that contains all fifth-order products of 256 pixels, i.§58], and [61].
to a (°**2°7') = 10'°-dimensional space. So, even if one
could control the statistical complexity of this function classh. Wrapping Up
one would still run into intractability problems while executing  The interesting point about kernel functions is that the scalar
an algorithm in this space. _ product can beémplicitly computed inF, without explicitly
Fortunately, for certain feature spacEsand corresponding using or even knowing the mappird. So, kernels allow to
mappingsb there is a highly effective trick for computing scalaiompyte scalar products in spaces, where one could otherwise
products in feature spaces usikgrnel functiongl], [3], [55],  hardly perform any computations. A direct consequence from
[56]. Let us come back to the example from (6). Here, the cofflyis finding is [11]: every (linear) algorithm that only uses
putation of a scalar product between two feature space vectQis,|gr products can implicitly be executed JF by using
can be readily reformulated in terms of a kernel function k kernels, i.e., one can very elegantly construct a nonlinear

version of a linear algorithm.

-
(B(x) - 2(y)) = (a:f, V2 z1 29, x%) (yf, V21192, y%) In the following sections we use this philosophy for super-
T2 vised and unsupervised learning: by (re-) formulating linear,
= ((z1, 22)(1, 52) ) scalar product-based algorithms thatsireplein feature space,
=(x-y)? one is able to generate powerful nonlinear algorithms, which use
= k(x, y). rich function classes in input space.
This finding generalizes: IV. SUPERVISEDLEARNING
» Forx, y € R, andd € N the kernel function We will now briefly outline the algorithms of SVMs and the
d KFD. Furthermore we discuss the Boosting algorithm from the
k(x,y) = (x-¥) kernel feature space point of view and show a connection to

VMs. Finally, we will point out some extensions of these al-

computes a scalar product in the space of all products o orithms proposed recently.

vector entries (monomials) of andy [3], [11].
* If k: C x C — R is a continuous kernel of a positive Support Vector Machines
integral operator on a Hilbert spaée(C) on a compact

setC c RV, i.e., Let us recall from Section Il that the VC dimension of a linear

system, e.g., separating hyperplanes (as computed by a percep-
tron)

VI L) [ Ky dxdy 2 0
ce _

y = sign((w - x) + b)

then there exists a space and a mappingt: RY — _ _

F such that kx, y) = (®(x) - ®(y)) [3]. This can be Can be upper bounded in terms of the margin [cf. (5)]. For sep-

seen directly from Mercer’s theorem [59] saying that an§'ating hyperplane classifiers the conditions for classification
kernel of a positive integral operator can be expanded {¥jthout training error are
its Eigenfunctionsp; (A; > 0, Nr < o0) (W %)+ b) > 1, i=1. . .n

N7 3Even algorithms that operate on similarity measures k generating positive
k(X, y) = Z )\ﬂ/)j (X)i/)j (y) matrices kx;, x;);; can be interpreted as linear algorithms in some feature
Jj=1 spaceF [4].
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TABLE I
CoMMON KERNEL FUNCTIONS: GAUSSIAN RBF (¢ € R), POLYNOMIAL (d € N, 8 € R), SGMOIDAL (x, # € R) AND INVERSEMULTIQUADRIC (¢ € R, ) KERNEL
FUNCTIONS ARE AMONG THE MOST COMMON ONES. WHILE RBF AND POLYNOMIAL ARE KNOWN TO FULFILL MERCERSCONDITION, THIS IS NOT
STRICTLY THE CASE FOR SIGMOIDAL KERNELS [33]. FURTHER VALID KERNELS PROPOSED IN THECONTEXT OF REGULARIZATION
NETWORKS ARE E.G, MULTIQUADRIC OR SPLINE KERNELS[39], [57], [58]

% — viI2
Gaussian RBF  k(x,y) = exp (M) (1)

Polynomial ((x-y)+ g)d
Sigmoidal tanh(k(x - y) +0)
1

Vix =yl + ¢

inv. multiquadric

As linear function classes are often not rich enough in practiderom the right equation of (11), we find that is contained in
we will follow the line of thought of the last section and conthe subspace spanned by théx;). By substituting (11) into
sider linear classifiers in feature space using dot products. (Id®) and by replacing®(x;) - ®(x;)) with kernel functions
this end, we substitut®(x; ) for each training example;, i.e., k(x;, x;), we get the dual quadratic optimization problem:
y = sign(w - &(x)) + b). In feature space, the conditions for

- pn . . n n
perfect classification are described as max Z a; — % Z ey K(xi, %)
yi((w-®(x;))+b) > 1, i=1,...,n (8) _ =1 ba=1
subjectto a; >0,¢t=1,...,n,

The goal of learning is to findv € F andb such that the ex- n
pected risk is minimized. However, since we cannot obtain the Zazyz =0.
expected risk itself, we will minimize the bound (3), which con- i=1

sists of the empirical risk and the complexity term. One strate

is to keep the empirical risk zero by constrainigandb to the coefficients;, i = 1, ... . n, which one needs to express te

per_fect separation case, \.Nh'le minimizing the complexn;_/ terrthich solves (9). This leads to the nonlinear decision function
which is a monotonically increasing function of the VC dimen-

%us, by solving the dual optimization problem, one obtains the

sionh. For a linear classifier in feature space the VC dimension n

h is bounded according t < [|w||*R? + 1 [cf. (5)], whereR f(x) =sgn <Z v ((x) - (xy)) + b)
is the radius of the smallest ball around the training data (e.g., i=1

[3]), which is fixed for a given data set. Thus, we can minimize i

the complexity term by minimizingjw/||%. This can be formu- =sgn <2 yioK(x, X;) + b) :

lated as a quadratic optimization problem

Note that we have up to now only considered the separable case,
which corresponds to an empirical error of zero (cf. Theorem

] ] o 1). However for noisy data, this might not be the minimum in
subject to (8). However, if the only possibility to access the fege expected risk [cf. (3)] and we might face overfitting effects

ture space is via dot-products computed by the kernel, we G@f Fig. 1). Therefore a “good” tradeoff between the empirical
not solve (9) directly sincev lies in that feature space. Butyjsk and the complexity term in (3) needs to be found. Using a
it turns out that we can get rid of the explicit usagevefy  achnique which was first proposed in [62] and later used for

forming the dual optimization problem. Introducing Lagranggy/ms in [2], one introduces slack-variables to relax the hard-
multipliersa; > 0,¢ = 1, ..., n, one for each of the con- margin constraints

straints in (8), we get the following Lagrangian:

s o1 2
min [lwl

L(w. b, @) = 3 |Iw]* =S ciwi((w-2(x:))+b)— 1). (10) (12)

=1
additionally allowing for some classification errors. The SVM
solution can then be found by 1) keeping the upper bound on
the VC dimension small and 2) by minimizing an upper bound
>, & on the empirical risk, i.e., the number of training er-

The task is to minimize (10) with respect to, b and to max-
imize it with respect tay;. At the optimal point, we have the
following saddle point equations:

L L rors. Thus, one minimizes

— =0 and — =0

ab ow "
which translate into min §[w|*+C> &

w,b. ¢

i=1

n n
Z o, =0 and w= Z oy P(x;). (12) “Other bounds on the empirical error, li§e}_, £2 are also frequently used
im1 im1 (e.g., [2], [63]).
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where the regularization constarit> 0 determines the tradeoff 3) Computing the ThresholdThe thresholdb can be
between the empirical error and the complexity term. This leadesmputed by exploiting the fact that for all S\fs; with

to the dual problem: 0 < «a; < C, the slack variablég; is zero. This follows from the
n n Karush—Kuhn—Tucker (KKT) conditions [cf. (16)]. Thus, for
max Zaz -1 Z iy K(Xi, X;) (13)  any support vectox; with s € I := {i : 0 < a; < C} holds
i=1 i,5=1
subjectto 0 < o; <C, i =1, ..., n, (14) ui | b+ Zyjajk(xi, x;) | =1
n =1
> i =0, (15) ’
i=1 Averaging over these patterns yields a numerically stable solu-
From introducing the slack-variabl€s, one gets théox con- tion
straints that limit the size of the Lagrange multipliesis:< C, n
pa 1
L—l,...,?‘L. S bzmz yi—Zyjocjk(xi,xj)
1) Sparsity: Most  optimization methods are based il j=1

on the second-order optimality conditions, so called . ) ) .
Karush—Kuhn—Tucker conditions which state necessary4) A Geometrical ExplanationHere, we will present an il-
and in some cases sufficient conditions for a set of variablgtstration of the SVM solution to enhance intuitive understand-
to be optimal for an optimization problem. It comes handi’ds- Let us normalize the weight vector to one (ijgv||> = 1)
that these conditions are particularly simple for the dual Svi@nd fix the threshold = 0. Then, the set of alw which sepa-

problem (13) [64] rate the training samples is completely described as
oy = 0 = yif(xz) Z 1 and Sz =0 V = {W|ylf(xl) > 07 1= 17 B 2 ||W||2 = 1}
0<ai<C = yf(x)=1 and &=0 (16)  The setis called “version space” [66]. It can be shown that the
o =C = uf(x;)<1 and ¢ >0. SVM solution coincides with the Tchebycheff-center of the ver-

sion space, which is the center of the largest sphere contained

They reveal one ofthe mostimportant property of SVMs: the Shv (cf. [67]). However, the theoretical optimal point in ver-

lution is sparse i, i.e., many patterns are outside the margip. - o s .
area and the optimal,’s are zero. Specifically, the KKT con- sion space yielding a Bayes-optimal decision boundary is the

ditions show that only such; connected to a training patternBayes point, which is known to be CIO_Ser appro_xw_nated by
S . the center of mass [68], [69]. The version space is illustrated
x;, which is either on the margin (i.e0, < «; < C and

vif(x:) = 1) or inside the margin area (i.es; = C and as a region on the sphere as shown in Figs. 5 and 6. If the ver-

e . . ) ion space is shaped as in Fig. 5, the SVM solution is near to
y’f(x.”) < 1) are nonzero. W'th.OUt this sparsity property, SV he optimal point. However, if it has an elongated shape as in
learning would hardly be practical for large data sets.

) e Fig. 6, the SVM solution is far from the optimal one. To cope
2) v-SVMs: Several modifications have been proposed tv(\)/ith this problem, several researchers [68], [70], [71] proposed

the basic SVM algorithm. One particular useful modification ar. billiard sampling method for approximating the Bayes point.

»-SVMs [65], originally proposed for regression. In the case his method can achieve improved results, as shown on several
pattern recognition, they replace the rather unintuitive regulabr- '

A . : enchmarks in comparison to SVMs.
ization constan' with another constant € (0, 1] and yield, ! parl

. . : . : (?) Optimization Techniques for SVM3o solve the SVM
for appropriate parameter choices, identical solutions. InSteﬁ‘roblem one has to solve the (convex) quadratic programming
of (13) one solves

(QP) problem (13) under the constraints (14) and (15) [(13) can

L& be rewritten as maximizing-1/2)a” K + 1T a whereK is
max 3 Z oo yiy; K(xi, ;) the positive semidefinite matri;; = y;y; k(x;, x;) andl the
i, j=1 vector of all ones]. As the objective function is convex every
subjectto 0 < o; < 1/n, ¢t =1,....n, (local) maximum is already a global maximum. However, there
n can be several optimal solutions (in terms of the variablgs
Zaiyi =0, which might lead to different testing performances.
i=1 There exists a huge body of literature on solving quadratic
Z“i > 0 programs and several free or commercial software packages
- (see, e.g., [33], [73], and [74], and references therein). How-

ever, the problem is that most mathematical programming ap-

The advantage is that this new paramethas a clearer interpre- nroaches are either only suitable for small problems or assume
tation than simply “the smaller, the smoother”: under some miﬁa{at the quadratic term covered Kis very sparse, i.e., most el-
assumptions (data i.i.d. from continuous probability distributiogments of this matrix are zero. Unfortunately this is not true for
[65]) it is asymptotically 1) an upper bound on the number ghe SVM problem and thus using standard codes with more than
margin errors and 2) a lower bound on the number of SVs. 5 few hundred variables results in enormous training times and

5A margin error is a poink; which is either being misclassified or lying more than demanding memory needs. Nevertheless, the struc-
inside the margin area. ture of the SVM optimization problem allows to derive specially
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was suggested to keep the size of the subproblems fixed and to
add and remove one sample in each iteration. This allows the
training of arbitrary large data sets. In practice, however, the
convergence of such an approach is very slow. Practical imple-
mentations use sophisticated heuristics to select several patterns
to add and remove from the subproblem plus efficient caching
methods. They usually achieve fast convergence even on large
datasets with up to several thousands of SVs. A good quality
(free) implementation is SVij: [78]. A quadratic optimizer

.., ) . is still required and contained in the package. Alternatively, the
NN package [75] also contains a decomposition variant.

Fas A e ofth , here the SYM works fine. T c) Sequential Minimal Optimization (SMO)Fhis

of O')‘ o theeg’\e/r,a";glfﬁg%f(‘;‘f Fe;éeureetaken o ?7'2r]e € ceNiiethod proposed by [79] can be viewed as the most extreme
case of decomposition methods. In each iteration it solves a
guadratic problem of size two. This can be done analytically
and thus no quadratic optimizer is required. Here the main
problem is to chose a good pair of variables to optimize in each
iteration. The original heuristics presented in [79] are based on
the KKT conditions and there has been some work (e.g., [80])
to improve them. The implementation of the SMO approach
is straightforward (pseudocode in [79]). While the original
work was targeted at an SVM for classification, there are now
also approaches which implement variants of SMO for SVM

ey . T e e regression (e.g., [33] and [36]) and single-class SVMs (cf.
SR N below, [14)).
T W d) Other Techniquesfurther algorithms have been pro-

Fig.6. Anexample of the version space where SVM works poorly. The versi_&%Osed to solve the SVM problem 0!’ a Clo_se approximation. For

space has an elongated shape and the center of s far from the SYM  instance, the Kernel-Adatron [81] is derived from the Adatron

solution (x). Figure taken from [72]. algorithm by [82] proposed originally in a statistical mechanics
setting. It constructs a large margin hyperplane using online

tailored algorithms which allow for fast convergence with smalgarning. Its implementation is very simple. However, its draw-
memory requirements even on |arge prob|ems_ Here we V\bﬁiCk is that is does not allow for training errors, i.e., itis onIy
briefly consider three different approaches. References, coilid for separable data sets. In [83], a slightly more general ap-
taining more details and tricks can be found, e.g., in [6] arffoach for data mining problems is considered.
[33]. e) Codes: A fairly large selection of optimization codes

a) Chunking: A key observation in solving large scalefor SVM classification and regression may be found on the
SVM problems is the sparsity of the solution Depending on Web at [84] together with the appropriate references. They
the problem, many of the optimal; will either be zero or on range from simple MATLAB implementation to sophisticated
the upper bound’. If one knew beforehand whicek; were zero, C, C++ or FORTRAN programs. Note that most of these
the corresponding rows and columns could be removed from teplementations are for noncommercial use only.
matrix & without changing the value of the quadratic form. Fur-
ther, a pointx can only be optimal for (13) if and only if it fulfills B. Kernel Fisher Discriminant
.the KKT.conditions', [cf. (16)]. In[64] a mgthod called chunking. The idea of the KFD (e.g., [7], [9], and [10]) is to solve the
is described, making use of the sparsity and the KKT congfroplem of Fisher's linear discriminant [85], [86] in a kernel fea-
tions. At every step chunking solves the problem containirigre spaceF, thereby yielding a nonlinear discriminant in input
all nonzeroa; plus some of they; violating the KKT condi- space. In the linear case, Fisher's discriminant aims at finding
tions. The size of this problem varies but is finally equal to thg jinear projections such that the classes are well separated (cf.
number of nonzero coefficients. While this technique is suifig 7). Separability is measured by two quantities: How far are
able for fairly large problems it is still limited by the maximalhe projected means apart (should be large) and how big is the
number of support vectors that one can handle and it still fgariance of the data in this direction (should be small). This can

quires a quadratic optimizer to solve the sequence of smaligf achieved by maximizing the Rayleigh coefficient
problems. A free implementation can be found, e.g., in [75].

b) Decomposition MethodsThose methods are similar w' Spw
in spirit to chunking as they solve a sequence of small QPs as J(w) =
well. But here the size of the subproblems is fixed. They are
based on the observations of [76], [77] that a sequence of QFbetween and within class variance with respecitavhere
which at least always contains one sample violating the KKT
conditions will eventually converge to the optimal solution. It Sp = (mg —my)(ma — ml)T

_— 17
w'! Syw (17)
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Wroa As outlined before, the dimension of the feature space is equal

to or higher than the number of training sampteshich makes
regularization necessary. In [7] it was proposed to add a multiple
of, e.g., the identity or the kernel matriX to N, penalizing
|la||? or [|w||?, respectively (see also [87] and [88]).

To maximize (19) one could either solve the general-
ized EigenproblemMa = MANe, selecting the Eigenvector
o with maximal EigenvalueX, or, equivalently, compute
a = N Y, — p). However, as the matriced§ and M
scale with the number of training samples and the solutions are
nonsparse this is only feasible for moderateOne possible
solution is to transform KFD into a convex quadratic program-
ming problem [89] which allows to derive a sparse variant
of KFD and a more efficient, sparse-greedy approximation
algorithm [90]. Recalling that Fisher's discriminant tries to
minimize the variance of the data along the projection whilst
maximizing the distance between the average outputs for each

Fig. 7. lllustration of the projections of PCA and Fisher's discriminant for glass, the following quadratic program does exactly this:

toy _datg set. It_|s c_Iea_rIy seen that PCA is purely descriptive, whereas the Fisher min ||£||2 + CP(a)
projection is discriminative.

WFisher

a7 ?

d subjectto Ka+1b=y +¢& (20)
an
1]¢6=0 fork=1,2
— P— Pp— T
Sw = Z Z(Xz m)(Xi —mp) for a, £ € R, andb, C € R. Here P is a regularizer as men-

k=1 2:€L tioned before andl,); is one fory; belonging to clas and

Herem; andZ; denote the sample mean and the index seéro otherwise. Itis straightforward to show, that this program is
for classk, respectively. Note that under the assumption thatjuivalent to (19) with the same regularizer added to the matrix
the class distributions are (identically distributed) Gaussian®, [89]. The proof is based on the facts that 1) the mabfixs
Fisher’s discriminant is Bayes optimal; it can also be generaknk one and 2) that the solutiomsto (19) are invariant under
ized to the multiclass casélo formulate the problem in a kernelscaling. Thus one can fix the distance of the means to some ar-
feature spac# one can make use of a similar expansion as (1bjtrary, positive value, say two, and just minimize the variance.
in SVMs forw € F, i.e., one can expressin terms of mapped The first constraint, which can be read(®@s-x;) +b = y; +&;,

training patterns [7] +=1, ..., n, pulls the output for each sample to its class-label.
" The term||£]]? minimizes the variance of the error committed,

W= Z o B(x;). (18) Whilethe constraints, £ = 0 ensure that the average output for

= each class is the label, i.e., il labels the average distance of

. . L the projections is two. FaF' = 0 one obtains the original Fisher
Substituting®(x) for all x in (17) and plugging in (18), the algorithm in feature space

optimization problem for the KFD in the feature space can then 1) Optimization: Besides a more intuitive understanding of

be written as [8] the mathematical properties of KFD [89], in particular in rela-
(a'p)? o Ma tion to SVMs or the relevance vector machine (RVM) [91], the
J(a@) = a Na o Na (19)  formulation _(20) allows to derive_ more efficient algorithms as
well. Choosing &, -norm regularizer Rx) = ||a||; we obtain
sparse solutions [sparse KFD (SKFD)By going even further

wherep;, = (1/|Zk[)K1p, N = KK — 2k=1,2 Iy

b= py—p, M = _IWT’ and K;; - (@(xi) - ‘I’(_Xj)? = and replacing the quadratic penalty on the variajlesth an
k(xi, x;). The projection of a test point onto the discriminan, _norm as well, we obtain a linear program which can be very
is computed by efficiently optimized using column generation techniques (e.g.,
n [92]) [linear sparse KFD (LSKFD)]. An alternative optimization
(w-o(x)) = Z a; K(x;, x). strategy arising from (20) is to iteratively construct a solution to
i=1 the full problem as proposed in [90]. Starting with an empty so-

Finally, to use these projections in classification one needs/#ion one adds in each iteration one pattern to the expansion
find a suitable threshold which can either be chosen as the méh#)- This pattern is chosen such that it (approximately) gives

of the average projections of the two classes or, e.g., by trainingrougnly speaking, a reason for the induced sparseness is the fact that vectors
a linear SVM on the projections. far from the coordinate axes are “larger” with respect totth@orm than with
respect td’,,-norms withp > 1. For example, consider the vectdiis 0) and
6This can be done with kernel functions as well and has explicitly been cdi-/+/Z, 1/+/2). For the two normj|(1, 0)||> = |[(1/v/2, 1/v2)||= = 1, but
ried out, e.g., in [9], [10]. However, most further developments for KFD do ndor the¢; -norm,1 = ||(1, 0)||1 < ||(1/v/2, 1/v2)||= = V2. Note that using
easily carry over to the multiclass case, e.g., resulting in integer programmihg ¢, -norm as regularizer the optimal solution is always a vertex solution (or
problems. can be expressed as such) and tends to be very sparse.
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the largest decrease in the objective function (other criteria 8 subjectto (8) can be restated as a maximization of the margin
possible). When the change in the objective falls below a prege(cf. Fig. 3)

fined threshold the iteration is terminated. The obtained solution

is sparse and yields competitive results compared to the full so- _1ax p

. . wcF, pcRy
lution. The advantages of this approach are the smaller memory

. .. . . N
requirements and faster training time compared to quadratic_ . ‘ o N> L
programming or the solution of an Eigenproblem. subject to yzzlw, Pile (il 2 » fori=1,...,n
=
C. Connection between Boosting and Kernel Methods [wllz = 1, 22)

We will now show a connection of boosting to SVMs anavhere N = dim(.F) and P is the operator projecting onto the
KFD. Let us start with a very brief review of Boosting methods;th coordinate in feature space. The use of éh@orm of w
which does not claim to be complete—for more details see, e.@.,the last constraint implies that the resulting hyperplane is
[53], [93]-[97]. The first boosting algorithm was proposed byhosen such that the minimu#a-distance of a training pat-
Schapire [98]. This algorithm was able to “boost” the perfotern to the hyperplane is maximized (cf. Section II-B). More
mance of a weak PAC learner [99] such that the resulting alggenerally, using an arbitrar,-norm constraint on the weight
rithm satisfies the strong PAC learning criteria [180L.ater, vector leads to maximizing thg-distance between hyperplane
Freund and Schapire found an improved PAC boosting algend training points [107], whergl/¢) + (1/p) = 1. Thus, in
rithm—called AdaBoost [53]—which repeatedly calls a give(21) one maximizes the minimur,-distance of the training
“weak learner” (also: base learning algorithéand finally pro-  points to the hyperplane.
duces a master hypothegisvhich is a convex combination of  On the level of the mathematical programs (22) and (21), one
the functionsh; produced by the base learning algorithm, i.ecan clearly see the relation between boosting and SVMs. The
f(x) = Z;‘P:l(wt/||w||l)ht(x) andw; > 0,t = 1,..., 7. connection can be made even more explicit by observing that
The given weak learnef is used with different distributions any hypothesis seif implies a mappingp by
p=[pi,...,pn] (Whered .p, = 1,p; 20,5 =1,...,n)
on the training set, which are chosen in such a way that patterns ®: x - [hi(x), ..., hn(x)]T
poorly classified by the current master hypothesis are more em-
phasized than other patterns. and therefore also a kernelk y) = (®(y) - ®(y)) =

Recently, several researchers [101]-[104] have notic@]’.\;l hj(x)h;(y), which could in principle be used for SVM
that AdaBoost implements a constraint gradient descent (¢earning. Thus, any hypothesis détspans a feature spadge
ordinate-descent) method on an exponential function of tReirthermore, for any feature spade which is spanned by
margins. From this understanding, it is apparent that othesme mappingp, the corresponding hypothesis d&tcan be
algorithms can be derived [101]-[10%4JA slight modification readily constructed b, = P;[®].
of AdaBoost—called Arc-GV—has been proposed in [195]. Boosting, in contrast to SVMs, performs the computagzn

For Arc-GV it can be proven that it asymptotically (with theplicitly in feature space. This is well known to be prohibitive, if
number of iterations) finds a convex combination of all possibt&e solutionw is not sparse, as the feature space might be very
base hypotheses that maximizes the margin—very muchhigh dimensional. As mentioned in Section IV-B (cf. Footnote
spirit to the hard margin SVM mentioned in Section 1V-AZ7), using the/;-norm instead of thé,-norm, one can expect to
Let H := {h;]j = 1, ..., J} be the set of hypotheses, fromget sparse solutions i.1t This might be seen as one important
which the base learner can potentially select hypotheses. Thegredient for boosting, as it relies on the fact that there are only
the solution of Arc-GV is the same as the one of the following few hypotheses/dimensiohs = P;[®] needed to express the
linear program [105], that maximizes the smallest maggin  solution, which boosting tries to find during each iteration. Ba-

sically, boosting considers only the most important dimensions

- eglé}}ém p in feature space and can this way be very efficient.
J .
subjectto ;> wih;(x;)>p  fori=1,....n (21) D. Wrapping Up
j=1 SVMs, KFD, and boosting work in very high-dimensional

feature spaces. They differ, however, in how they deal with
the algorithmic problems that this can cause. One can think
Let us recall that SVMs and KFD implicitly compute scalapf boosting as an SV approach in a high-dimensional feature
products in feature space with the help of the kernel trick. Omigpace spanned by the base hypothesis of some functidii.set
ting the bias § = 0) for simplicity, the SVM minimization of The problem becomes tractable since boosting uses effectively
a ¢;-norm regularizer. This induces sparsity, hence one never
8A method that builds a strong PAC learning algorithm from a weak pag€ally works in the full space, but always in a small subspace.
learning algorithm is called a PAC boosting algorithm [96]. Vice versa, one can think of SVMs and KFD as a “boosting

9See also [96] for an investigation in which potentials lead to PAC boostingoproach” in a high-dimensional space. There we use the
algorithms.

10A generalization of Arc-GV using slack variables as in (12) can be found 1Note that the solution of SVMs is under rather mild assumption not sparse
in [106], [92]. inw = 3" «;®(x;)[108], but ina.

=1

[wlls =1.



190 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

kernel trick and therefore never explicitly work in the feature  jipaqar P A EHx¥) = (X-¥)

space. Thus, SVMs and KFD get away without having to use i
. e e
£1-norm regularizers; indeed, thepuldnot use them onv, as
the kernel only allows computation of thfg-norm in feature oy
space. SVM and boosting lead to sparse solutions (as does KFD \‘\ —~

with the appropriate regularizer [89]), although in different

spaces, and both algorithms are constructed to exploit the

form of sparsity they produce. Besides providing insight, this
correspondence has concrete practical benefits for designing

new algorithms. Almost any new development in the field of ternel PCA

. . . kix,y) = (x-y
SVMs can be translated to a corresponding boosting algorithm = -

using thef;-norm instead of th&s-norm and vice versa (cf. - '
[106], [109], [110], [155]). i
V. UNSUPERVISEDLEARNING K | sk -— \ F
O X

In unsupervised learning only the data, ..., x, € RV is
given, i.e., the labels are missing. Standard questions of unsu- _ _ o _
pervised learning are clustering, density estimation, and data fi- 8- By using a kernel function, kernel-PCA is implicitly performing a

L 51 d 11117, As alreadv outlined r:lbovllnear PCA in some high-dimensional feature space, that is nonlinearly related
scription (Se_e’ €.g., [ ] an [ ]) i : y g _t%’theinput space. (a) Linear PCA in the input space is not sufficient to describe
the kernel trick cannot only be applied in supervised learninige mostinteresting direction in this toy example. (b) Using a suitable nonlinear
scenarios, but also for unsupervised learnifiggn that the base Mapping® and performing linear PCA on the mapped pattemns (kernel PCA),

. . . the resultinghonlineardirection in the input space can find the most interesting
algorithm can be written in terms of scalar produdtsthe fol-  girection (figure from [11]).
lowing sections we will first review one of the most common

statistical data analysis algorithm, PCA, and explain its “kemqi‘urthermore, as can be seen from (23) all Eigenvectors with

ized” variant: kernel PCA (see [11]). Subsequently, single-clagg,zero Eigenvalue must be in the span of the mapped data,
classification is explained. Here the support of a given data $gf v spa{®(x1), ..., ®(x,)}. This can be written as
is being estimated (see, e.g., [14], [110], [112], and [113]). Re- T

cently, single-class SVMs are frequently used in outlier or nov- vV - &
elty detection applications. - ; i B(x;).
A. Kernel PCA By multiplying with ®(x;,) from the left, (23) reads

The basic idea of PCA is depicted in Fig. 8. Hgrdimen- AMO(x) - V) = (®(xx) - CV) forallk =1, ..., n.
sional data, a set of orthogonal directions—capturing most of | .
the variance in the data—is computed, i.e., the firgirojec- D€fining ann x n-matrix
Flons & = 1,_ ..., N) allow t(_) reconstrupt the data with min- Ky = (9(x) - 0(x;)) = k(xi, X;) (24)
imal quadratic error. In practice one typically wants to describe
the data with reduced dimensionality by extracting a few measne computes an Eigenvalue problem for the expansion coeffi-
ingful components, while at the same time one is retaining maséntsc;, that is now solely dependent on the kernel function
existing structure in the data (see, e.g., [114]). Since PCA is a
linear algorithm it is clearly beyond its capabilities to extract A= Ka (= (o, ..., o)
nonlinear structures in the data as, e.g., the one observedl_hn

Fig. 8. Itis here, where the kernel-PCA algorithm sets in. To de- ° SOL\UUOQS()"“,Q a_) fu.rther r’l\?ed to bg normah;gi\b)l/ 'm
rive kernel-PCA we first map the datg x, € RN into  PosN9 k(@ - @) = 1in 7. Also—as in every ago-
P rithm—the data needs to be centeredinThis can be done by

%zﬁ;ure spacé (cf. Section Ill) and compute the covarlancesimply substituting the kernel-matrii with

T).

K=K-1,K-K1,+1,K1,

1 & T
C=_ Z O(x;)0(x;) - where(1,,);; = 1/n; for details see [11].
=t For extracting features of a new pattetrwith kernel PCA

The principal components are then computed by solving thee simply projects the mapped pattérfx) ontoV

Eigenvalue problem: find > 0, V # 0 with M
(VE-0(x)) = Y al(@(x) - &(x))
=1

n

M
W =0V =3 (00) VIaky) (23) =3 o kx, x). (25)
J=1 i=1



MULLER et al: AN INTRODUCTION TO KERNEL-BASED LEARNING ALGORITHMS 191

Eigenvalue=1.000 Eigenvalue=0, 531 Eigenvalue=1.000

|H

Eigenvalue=0.354

il

Fig. 9. Linear PCA, or, equivalently, kernel-PCA usingkky) = (x - y). ;

Plotted are two linear PCA features (sorted according to the size of the EW_H_‘_""'.HIUE"?;EH E'Eiﬂ':’*—’-’h‘.?"u-m
Eigenvalues) on an artificial data set. Similar gray values denote areas of -."_'_*---..___,,-r N 3%

similar feature value [cf. (25)]. The first feature (left) projects to the direction Tm———

of maximal variance in the data. Clearly, one cannot identify the nonlinear
structure in the underlying data using linear PCA only (figure from [118]).

Note that in this algorithm for nonlinear PCA the nonlinearity
enters the computation only at two points that do not change
the nature of the algorithm: 1) in the calculation of the matrix L

elements off (24) and 2) in the evaluation of the EXpanSIO%ig. 10. The first four nonlinear features of Kernel-PCA using a sigmoidal

(25). So, for obtaining the kernel-PCA components one onNRnel on the data set from Fig. 9. The Kernel-PCA components capture the
needs to solve a similar linear eigenvalue problem as before fonlinear structure in the data, e.g., the first feature (upper left) is better adapted

linear PCA, the only difference being that one has to deal with %)n(he curvature of the data than the respective linear feature from Fig. 9 (figure
T . fom [118]).

n x n problem instead of atv x N problem. Clearly, the size of

this problem becomes problematic for largeReference [115]
proposes to solve this by using a sparse approximation of tf
matrix K which still describes the leading Eigenvectors suffi
ciently well. In [116] a sparse kernel PCA approach is propose
set within a Bayesian framework. Finally, the approach given ii
[117] places d&; -regularizer into the (kernel) PCA problem with
the effect of obtaining sparse solutions as well at a comparab
low computational cost. Figs. 9-11 show examples for featurc =
extraction with Im_ear_ PCA and kernel-PCA for artificial da‘t%ig. 11. The first eight nonlinear features of Kernel-PCA using a RBF Kernel
sets. Further applications of kernel PCA for real-world data caf a toy data set consisting of three Gaussian clusters (see [11]). Upper left:
be found in Section VII-A-1 for OCR or in Section VII-C-1 for the first and second component split the data into three clusters. Note that

i ot ; rnel-PCA is not primarily built to achieve such a clustering. Rather it tries to
den0|smg pmblems’ other appllcatlons are found in, €.g. [ﬁﬁd a good description of the data in feature space and in this case the cluster

[12]: [119]- structure extracted has the maximal variance in feature space. The higher
components depicted split each cluster in halves (components 3-5), finally

. e - features 6—8 achieve orthogonal splits with respect to the previous splits (figure
B. Single-Class Classification fror#[ll]). e 9 plis Wil resp previous spits (figu

A classical unsupervised learning task is density estima-

tion. Assuming that the unlabeled observatiaas ..., X, kernels, such as Gaussian RBF ones, this sphere single-class
were generated i.i.d. aCCOfding to some unknown dlStrlbUtlg‘/M a|gorithm can be shown to be equiva|ent to the second
P(x), the task is to estimate its density. However, there aphsatz which is due to Scholkogdt al. [14]. For brevity we
several difficulties to this task. First, a denSity need not alwayﬁ” focus on this second approach as it is more in the line
exist—there are distributions that do not possess a densiy.his review since it uses margin arguments. It computes a
Second, estimating densities exactly is known to be a hajgperplane in feature space such that a prespecified fraction of
task. In many applications it is enough to estimate the suppgie training example will lie beyond that hyperplane, while at
of a data distribution instead of the full denSity. Single-da&ﬁe same time the hyperp|ane has maximal distance (margin) to

SVMs avoid solving the harder density estimation problem afKe origin. For an illustration see Fig. 12. To this end, we solve
concentrate on the simpler task [3], i.e., estimating quantilestff following quadratic program [14]:

the multivariate distribution, i.e., its support. So far there are

two independent algorithms to solve the problem in a kernel min Lwl? + LZ & —p (26)
feature space. They differ slightly in spirit and geometric notion W& £€ER™, pER vn &

[113], [14]. It is: howev_er, not q.uite clear which of them i.s subject to (W-B(x;)) > p— &, & > 0. 27)

to be preferred in practice (cf. Figs. 12 and 13). One solution

of the single-class SVM problem by Tax and Duin [113] usedere,» € (0, 1] is a parameter akin to the one described above
sphereswith soft margins to describe the data in feature spader the case of pattern recognition. Since nonzero slack vari-
close in spirit to the algorithm of [120]. For certain classes a@fbles¢; are penalized in the objective function, we can expect
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This problem can be solved with standard QP routines. It does,
o F however, possess features that sets it apart from generic QPs,
°© most notably the simplicity of the constraints. This can be ex-
s ° 05 ° 8o ploited by applying a variant of SMO developed for this purpose
6 0 ° o [14].
0 ° 5 The offsetp can be recovered by exploiting that for any
o o° which is not at the upper or lower bound, the corresponding
o patternx; satisfiesp = (w - ©(x;)) = >, a; K(x;, x;).
Note that ifr approaches zero, the upper boundaries on the
° . o Lagrange multipliers tend to infinity, i.e., the first inequality
v outliers constraint in (28) becomes void. The problem then resembles
°© the correspondingpard marginalgorithm, since the penaliza-
tion of errors becomes infinite, as can be seen from the primal
objective function (26). It can be shown that if the data set is sep-
arable from the origin, then this algorithm will find the unique
supporting hyperplane with the properties that it separates all
Fig. 12. lllustration of single-class idea. Solving (26), a hyperplangin data from the origin, and its distance to the origin is maximal
is cpnstructed that maximizes the distance to the origin while allowing:foramong all such hyperplanes. If, on the other hami;]uals one,
outliers. . .
then the constraints alone only allow one solution: the one where
all «; are at the upper bount)/(rn). In this case, for kernels
with integral one, such as normalized versions of (7), the de-
cision function corresponds to a thresholded Parzen windows
estimator. For the parameteione can show that it controls the
fraction of errors and SVs (along the lines of Section IV-A).
© Theorem 2 [14]: Assume the solution of (27) satisfigs# 0.
The following statements hold:

1) » is an upper bound on the fraction of outliers.
2) v is a lower bound on the fraction of SVs.
3) Suppose the data were generated independently from a
° e distributionP(x) which does not contain discrete compo-
o vn outliers nents. Suppose, moreover, that the kernel is analytic and
o nonconstant. When the numbeiof samples goes to in-
finity, with probability one,» equals both the fraction of
SVs and the fraction of outliers.
We have thus described an algorithm which will compute a
Fig. 13. lllustration of single-class idea. Construction of the smallest safegion that captures a certain fraction of the training examples.
sphere in that contains the data. It is a “nice” region, as it will correspond to a small value of
|lw]|?, thus the underlying function will be smooth [58]. How
that if w andp solve this problem, then the decision functiorabout test examples? Will they also lie inside the computed re-
f(x) = sgn(w-®(x)) — p) will be positive for most examples gion? This question is the subject of single-class generalization
x; contained in the training set, while the SV type regularizaticgrror bounds [14]. Roughly, they state the following: suppose
term ||w]|| will still be small. The actual tradeoff between theséhe estimated hyperplane has a snfja¥l||* and separates part
two goals is controlled by. Deriving the dual problem, the so-of the training set from the origin by a certain margify|wi.
lution can be shown to have a SV expansion (again, pattgrnsThen the probability thaestexamples coming from the same

/Wi

origin

with nonzerow; are called SVs) distribution lie outside of a slightlyarger region will not be
much larger than the fraction of training outliers.
Fig. 14 displays two-dimensional (2-D) toy examples, and
Jx) = 59”(2 o k(xi, x) — p) shows how the parameter settings influence the solution. For

further applications, including an outlier detection task in hand-

where the coefficients are found as the solution of the dudlritten character recognition, cf. [14].
problem

VI. M ODEL SELECTION

«

In kernel methods discussed so far, the choice of the kernel
has a crucial effect on the performance, i.e., if one does not
" choose the kernel properly, one will not achieve the excellent
Z o =1, performance reported in many papekéodel selectiontech-
=1

min i E a;o K%, X5)
ij

subjectto 0 < o; < 1/(wn),i=1,...,n (28)

nigues provide principled ways to select a proper kernel. Usu-
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(18 width & I 0.5, 0.1
frac. oV, ULs 0.24, 0.03 065, U-08
margin g/ ||w]| 0.62 0.48

Fig. 14. A single-class SVM using RBF kernel (7) applied to a toy problem; dorfaih: 1]2. First two pictures:Note how in both cases, at least a fraction of

v of all examples is in the estimated region (cf. table). The large valuecafuses the additional data points in the upper left corner to have almost no influence
on the decision function. For smaller valuesofsuch as 0.1third picture), the points cannot be ignored anymore. Alternatively, one can force the algorithm to
take these “outliers” into account by changing the kernel width (7): irfaheth picture,usinge = 0.1, » = 0.5, the data is effectively analyzed on a different
length scale which leads the algorithm to consider the outliers as meaningful points. Figure taken from [14].

ally, the candidates of optimal kernels are prepared using sothe support vectors do not change even when a sample is left
heuristic rules, and the one which minimizes a given criteriasut, the leave-one-out classification result of this sample can
is chosen. There are three typical ways for model selection witk computed exactly. Under this assumption, we can obtain
different criteria, each of which is a prediction of the generakn estimate of the leave-one-out error—without retraining the
ization error SVM many times. Although this assumption is rather crude and

1) Bayesian evidence frameworkThe training of a SYM not true in many cases, the span bound approach gives a close
is interpreted as Bayesian inference, and the model sel@gproximation of the true leave-one-out error in experiments.
tion is done by maximizing the marginal likelihood (i.e.fFor KFD there exists a similar result.
evidence), e.g., [91] and [121]. Now we would like to describe a particular efficient model

2) PAC: The generalization error is upper bounded usinggelection method that has in practice often been used [7], [89],
capacity measure depending both on the weights and {#€2], [128]-[130] in conjunction with the benchmark data sets
model, and these are optimized to minimize the boundescribed in Section VII-B.

The kernel selection methods for SVM following this ap- In model selection for SVMs and KFD we have to deter-
proach are reported, e.g., in [36], [122], and [123]. mine the kernel parameters [one (RBF) or more (e.g., polyno-

3) Cross validation: Here, the training samples are dividednial kernel)] and the regularization constarior », while for
to k subsets, each of which have the same number Bfosting one needs to choose the model-parameters of the base
samples. Then, the classifier is trainfedimes: In theith learner, a regularization constant and the number of boosting it-
(: = 1, ..., k) iteration, the classifier is trained on allerations. Given a certain benchmark data set, one usually has a
subsets except théh one. Then the classification error isnumber, say\/ (e.g., 100), realizations, i.e., splits into training
computed for theéth subset. It is known that the averagend test set, available (cf. Section VII-B). The different splits
of thesek errors is a rather good estimate of the geneare necessary to average the results in order to get more reliable
alization error [124]. The extreme case, wheris equal estimates of the generalization error.
to the number of training samples, is calledve-one-out  One possibility to do model-selection would be to consider
cross validation. Note that bootstrap [125], [126] is alseach realization independently from all others and to perform
a principled resampling method which is often used fdhe cross-validation procedufd times. Then, for each realiza-
model selection. tion one would end-up with different model parameters, as the

Other approaches, namely asymptotic statistical methati®del selection on each realization will typically have various

such as AIC [41] and NIC [43] can be used. However, singesults.

these methods need a large amount of samples by assumptiott,is less computationally expensive to have only one model
they have not been in use for kernel methods so far. For fby all realizations of one data set: To find this model, we run
and 2), the generalization error is approximated by expressianfive-fold-cross validation procedure only on a few, say five,
that can be computed efficiently. For small sample sizegalizations of the data set. This is done in two stages: first a
these values are sometimes not very accurate, but it is knoglobal search (i.e., over a wide range of the parameter space)
that nevertheless often acceptable good models are selededone to find a good guess of the parameter, which becomes
Among the three approaches, the most frequently used metmoaore precise in the second stage. Finally, the model parameters
is 3) [124], but the problem is that the computational cost &re computed as the median of the five estimations and are used
the highest, because the learning problem must be sdivedhroughout the training on al realization of the data set. This
times. For SVM, there is an approximate way to evaluate thnay of estimating the parameters is computationally still quite
n-fold cross validation error (i.e., the leave-one-out classexpensive, but much less expensive than the full cross validation
fication error) calledspan bound127]. If one assumes thatapproach mentioned above.
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Fig. 15. Typical handwritten digits from the USPS benchmark data set with 7291 training and 2007 test pattert® ¢ty scale images).

TABLE Il process we also used kernel-PCA to extract features from the
CLASSIFICATION ERROR IN % FOR OFFLINE HANDWRITTEN CHARACTER USPS data in the first Step A Subsequent linear classification

RECOGNITION ON THEUSPSWITH 7291 RATTERNS. INVARIANT SVMS ARE . .
ONLY SL|GHTLY BELOW THE BEST EXISTING RESULTS(PARTS OF THE on these n0n|lneal’ features a”OWGd tO aChIeVG an error I’ate

TABLE ARE FROM [136]). THIS IS EVEN MORE REMARKABLE SINCE IN of 4%, which is better by a factor of two than operating on

g35]‘[137]";ALARGERJRRA'N'N%SET WAS USED, CONTAINING Some linear PCA features (8.7%, cf. [11]). A benchmark problem
PPITIONAL AC”'“E{MPQLTVEEDTH'EG,'IE‘CVﬁEfg'Y“AVE BEENFOUND TO larger than the USPS data set (7291 patterns) was collected
Trnear POA & Trnear SV (Sehdlhopr et 2l [ | 7% by NIST gnd contains 120000 handwritten digits. Invariant
k-Nearest Neighbor ne 57% S\/Ms achleyed the record error rate of 0.6% [18], [153] on
LeNet1 (LeCun et. al. [132], [133], [134]) 4.9% this challenging and more realistic data set, better than tangent
Regularized RBF Networks (Rétsch [128]) 4.1% distance (1.1%) and convolutional neural networks (LeNet
Kernel-PCA & linear SVM (Scholkopf et. al. [11]) | 4.0% 5: 0.9%). With an error rate of 0.7%, an ensemble of LeNet
SVM (Schélkopf et. al. [120]) 4.0% 4 networks that was trained on a vast number of artificially
;Qi;ﬂﬁg%ﬁ%ggﬁﬁ?gp@t oL [131) g'ggz generated patterns (using invariance transformations) almost
Boosting (Drucker et. al. [137]) 2.6% matches the_ performance of the best S\_/M [134]. _
Tangent Distance (Simard et. al. [135], [136]) 2.5% 2) Analyzing DNA Data:The genomic text contains un-
Human error rate 2.5% translated regions and so-called coding sequences (CDS) that

encode proteins. In order to extract protein sequences from

nucleotide sequences, it is a central problem in computational

biology to recognize the translation initiation sites (TIS) from
This section describes selectednteresting applications of which coding starts to determine which parts of a sequence will

supervised and unsupervised learning with kernels. It servedtranslated and which not.

demonstrate that kernel-based approaches achieve competitiveoding sequences can in principle be characterized with

results over a whole range of benchmarks with different noisgignment methods that use homologous proteins (e.g., [138])

VII. A PPLICATIONS

levels and robustness requirements. or intrinsic properties of the nucleotide sequence that are
learned for instance with hidden Markov models (e.g., [139]).
A. Supervised Learning A radically different approach that has turned out to be even

1) OCR: Historically, the first real-world experiments ofMore successful is to model the task of finding TIS as a
SVMst2 —all done on OCR benchmarks (see Fig. 15)_e)g_la35|f|cat|on prot_)Iem (see, e.g. [28] and [14Q]). A potential
hibited quite high accuracies for SVMs [2], [120], [4], [131}Stat codon is typlcglly a AT@ triplet. The clgssﬁmatlon tagk
comparably to state-of-the-art results achieved with convoll¥- therefore to demqle whether or not a blhary coded (fixed
tive multilayer perceptrons [132]-[135]. Table Il shows thééngth) sequence window around the ATG indicates a true

classification performance of SVMs in comparison to othéy!S- The machine learning algorithm, for example a neural

state-of-the art classifiers on the United States Postal Senft@Work [140] or an SVM [28] gets a training set consisting
gTan input of binary coded strings in a window around the

(USPS) benchmark. Plain SVM give a performance ve X =4 Sl
similar to other state-of-the-art methods. However, SVMs ¢ G together with a label indicating true/false TIS. In contrast

be strongly improved by using prior knowledge. For instance IR @lignment methods, both neural networks and the SVM
[4] virtual support vectors have been generated by transformiﬁ@or'thm are fmdlng important structure in the data b_y learning
the set of support vectors with an appropriate invarianda the respective feature space to successfully classify from the
transformation and retraining the machine on these vectd@Peled data. . _ .
Furthermore one can structure kernels such that they inducé'S indicated in Section VII-Al, one can incorporate prior
local invariances like translations, line thickening or rotatiorf§10wledge to SVMs, e.g., by using a proper feature sphice

or that, e.g., products of neighboring pixels in an image [131IP particular m_the task_of T!S recognition it turne(_j out to be
that are thought to contain more information, are emphasiz&§'y helpful to include biological knowledge by engineering an
So, prior knowledge can be used for engineering a larger d&fPropriate kernel function [28]. We will give three examples

set or problem specific kernels (see also Section VII-A2 fori4pa has a four-letter alphabet: A, C, G, T.

an application of this idea to DNA analysis). In a two stage 1se define the input space by the same sparse bit-encoding scheme as used
12 . ) ) by Pedersen and Nielsen (personal communication): each nucleotide is encoded
Note that for our own convenience we have biased the selection towajgl five bits, exactly one of which is set. The position of the set bit indicates
applications pursued by the IDA group while adding abundant referencesffiether the nucleotide is A, C, G, or T, or if it is unknown. This leads to an
other work. input space of dimensiom = 1000 for a symmetric window of size 100 to the
13performed at AT&T Bell Labs. left and right of the ATG sequence.
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for kernels that are particularly useful for start codon recogni- TABLE IV

tion. While certain local correlations are typical for TIS. de- COMPARISON OFCLASSIFICATION ERRORS(MEASURED ON THETEST SETS)
’ ’ ACHIEVED WITH DIFFERENTLEARNING ALGORITHMS. FOR DETAILS SEE TEXT

pendencies between distant positions are of minor importance

or area priori known to not even exist. We want the feature  algorithm parameter | overall
space to reflect this. Thus, we modify the kernel utilizing a setting error
. . . . . neural network 15.4%
technique that was originally described for OCR in [131]: At g,
It alzberg method 13.8%
each sequence position, we compare the two sequences locally, gy, simple polynomial d=1 13.2%
within a small window of lengtt2/ + 1 around that position. SVM, locality-improved kernel | dy=4,/=4 | 11.9%
We count matching nucleotides, multiplied with weiglptsn- SVM. codon-improved kernel di=20=3 | 12.2%
creasing from the boundaries to the center of the window. The _SVM, Salzberg kernel di=31=1 | 11.4%

resulting weighted counts are taken to th¢éh power

The result of an experimental comparison of SVMs using
+1 these kernel functions with other approaches are summarized in
winy(x, y) = | > p;match;(x, y) Table IV. All results are averages over six data partitions (about
j=- 11 000 patterns for training and 3000 patterns for testing). SVMs
] __aretrained on 8000 data points. An optimal set of model-param-
where d, reflects the order of local correlations (withingers is selected according to the error on the remaining training
the window) that we expect to be of importance. Hergyia and the average errors on the remaining test set are reported
match,,;(x, y) is one for matching nucleotides at positionn Taple v, Note that the windows consistif+ 1 nucleotides.
p + j and zero otherwise. The window scores computed Witthe NN results are those achieved by Pedersen and Nielsen
win, are summed over the whole length of the sequenqgi40], personal communication). There, model selection seems
Correlations between up t windows are taken into accounty, haye involved test data, which might lead to slightly over-op-
by applying potentiation withl, to the resulting sum timistic performance estimates. Positional conditional prefer-
ence scores are calculated analogously to Salzberg [141], but
l d2 extended to the same amount of input data also supplied to the
kix,y)= <Z win,(x, y)) . other methods. Note that the performance measure shown de-
p=1 pends on the value of the classification function threshold. For
) o . SVMs, the thresholds are by-products of the training process;
We qall this kernel _Iocallty-|m_proved (contra_1ry to a plain polyzy; the Salzberg method, “natural” thresholds are derived from
nomial kernel), as it emphasatm:al correlations. ) _prior probabilities by Bayesian reasoning. Overall error denotes
In an attempt to further improve performance we aimed t0 it atip of false predictions to total predictions. The sensi-

corporate another piece of biological knowledge into the kemﬁ{/ity versus specificity tradeoff can be controlled by varying
this time concerning the codon-structure of the coding sequenge; threshold.

A codon is a triplet of adjacent nucleotides that codes for one
amino acid. By definition the difference between atrue TIS an
a pseudosite is that downstream of a TIS there is CDS (whi
shows codon structure), while upstream there is not. CDS &

di h tatistically diff : i ions drastically: up to 25% compared to the neural network.
noncoding sequences show statistically different CompostionS ¢, e gy ccesstul applications of SVMs have emerged in the
It is likely that the SVM exploits this difference for classifica-

tion. We could hope to improve the kernel by reflecting the facontext of gene expression profile analysis [26], [27], DNA and

that CDS shifted by three nucleotides still looks like CDS. Therﬁrmem analysis [29]-[31].

fore, we further modify the locality-improved kernel function to

account for this translation-invariance. In addition to counting. Benchmarks

matching nucleotides on corresponding positions, we also count ] ) o )

matches that are shifted by three positions. We call this kernel© evaluate a newly designed algorithm it is often desirable

codon-improved. Again, it can be shown to be a valid merct® have some standardized benchmark data_sets_,. For .th|s pur-

kernel function by explicitly deriving the monomial features. POS€ there exist several benchmark repositories, including UCI
A third direction for the modification of the kernel functionl142]; DELVE [143], and STATLOG [144]. Some of them also

is obtained by the Salzberg method, where we essentially rérlﬁQVide results of some standard algorithms on these data sets.

resent each data point by a sequence of log odd scores relatir{be problems about these repositories and the given results are
individually for each position, two probabilities: first, how likely @S follows:

the observed nucleotide at that position derives from a true TIS ¢ it is unclear how the model selection was performed;

and second, how likely that nucleotide occurs at the given posi- ¢ it is not in all cases stated how large the training and test
tion relative to any ATG triplet. We then proceed analogouslyto  samples have been;

the locality-improved kernel, replacing the sparse bit represen- « usually there is no information how reliable these results
tation by the sequence of these scores. As expected, this leads are (error bars);

to a further increase in classification performance. In the strict « the data sometimes needs preprocessing;

sense this is not a kernel but corresponds to preprocessing. ¢ the problems are often multi-class problems,

di

In conclusion, all three engineered kernel functions clearly
tperform the NN as devised by Pedersen and Nielsen or the
Izberg method by reducing the overall number of misclassifi-
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TABLE V
COMPARISON[8] BETWEEN SVM THE KERNEL FISHER DISCRIMINANT (KFD), A SINGLE RADIAL BASIS FUNCTION CLASSIFIER (RBF), ADABOOST(AB), AND
REGULARIZED ADABOOST(AB ) ON 13 DIFFERENTBENCHMARK DATASETS (SEE TEXT). BESTRESULT IN BOLD FACE, SECOND BEST IN ITALICS

SVM KFD RBF AB ABp

Banana 11.5+£0.07 | 10.8+0.05 | 10.8+0.06 | 12.3+£0.07 | 10.9£0.04
B.Cancer 26.0+0.47 | 25.840.46 | 27.6+£0.47 | 30.4+£0.47 | 26.54+0.45
Diabetes 23.5+0.17 | 23.2+0.16 | 24.3+£0.19 | 26.5£0.23 | 23.84+0.18
German 23.6+£0.21 | 23.7£0.22 | 24.7+0.24 | 27.5+0.25 | 24.3+£0.21
Heart 16.0+0.33 | 16.1£0.34 17.6+£0.33 | 20.3+£0.34 | 16.5+0.35
Image 3.0£0.06 3.3+0.06 3.3£0.06 | 2.7£0.07 | 2.71+0.06
Ringnorm 1.74£0.01 1.5+0.01 1.7+0.02 1.94+0.03 | 1.6x0.01
F.Sonar 32.440.18 | 33.2+£0.17 | 34.440.20 | 35.7+0.18 | 34.24+0.22
Splice 10.94£0.07 | 10.5%£0.06 | 10.0£0.10 | 10.1+0.05 | 9.5+0.07
Thyroid 4.8£0.22 | 4.240.21 4.5+£0.21 | 4.4%£0.22 | 4.6%0.22
Titanic 22.4+0.10 | 23.2£0.20 | 23.3£0.13 | 22.6x0.12 | 22.6x0.12
Twonorm 3.0+0.02 | 2.6+0.02 2.9£0.03 | 3.0£0.03 | 2.7£0.02
Waveform 9.9+0.04 9.9+0.04 10.74+0.11 | 10.8+0.06 | 9.8+0.08

Some of these factors might influence the result of the learniimgplicit regularization concepts by employing the same kernel
machine at hand and makes a comparison with results, e.g.[58]. The remaining differences arise from their different
other papers difficult. loss functions which induce different margin optimization
Thus, another (very clean) repository—tHeA repository strategies: KFD maximizes the average margin whereas SVM
[145]—has been created, which contains 13 artificial andaximizes the soft margin (ultimately the minimum margin).
real-world data sets collected from the repositories above. Timepractice, KFD or RVM have the advantage that—if required
IDA repository is designed to cover a variety of different datée.g., medical application, motion tracking)—they can also
sets: from small to high expected error rates, from low- teupply a confidence measures for a decision. Furthermore, the
high-dimensional data and from small and large sample sizeslutions for KFD with a sparsity regularization are as sparse
For each of the data setsanana (toy data set introduced as for RVM [91] (i.e., much higher sparsity than for SVMs can

in [102] and [128]), breast cancer 6 diabetes, be achieved), yet using an order of magnitude less computing

german, heart, image segment, ringnorm, time than the RVM [89].

flare solar, splice, thyroid, titanic, 1) Miscellaneous ApplicationsThe high-dimensional

twonorm, waveform ), the repository includes problem of text categorization is another application where
« a short description of the dataset, SVMs have been performing particularly well. A popular

« 100 predefined splits into training and test samples, ~ benchmark is the Reuters-22173 text corpus, where Reuters
« the simulation results for several kernel based ars@®llected 21450 news stories from 1997, and partitioned and

Boosting methods on each split including the parametef$lexed them into 135 different categories, to simplify the ac-

that have been used for each method, cess. The feature typically used to classify Reuters documents
« a simulation summary including means and standard &€ 10 000-dimensional vectors containing word frequencies
viations on the 100 realizations of the data. within a document. With such a Coding SVMs have been

To build the IDA repository for problems that are originally2chieving excellent results, see, e.g., [78] and [146].

not binary classification problems, a random partition into two, FUrther applications of SVM include object and face recog-

classes is used. Furthermore for all sets preprocessing is pefition tasks as well as image retrieval [147] and [148]. SVMs

formed and 100 different partitions into training and test sBgVve also been successfully applied to solve inverse problems

(mostly~60% : 40%) have been generated. On each partitioﬂSA’ [149].

set of different classifiers is trained, the best model is selected by

cross-validation and then its test set error is computed. The IRA ynpsypervised Learning

repository has been used so far to evaluate kernel and boosting

methods, e.g., in [7], [89], [97], [102], [128]-[130]. 1) Denoising: Kernel PCA as a nonlinear feature extractor
In Table V we show experimental comparisons betwedras proven powerful as a preprocessing step for classification

SVM, RBF, KFD, and AdaBoost variants [8]. Due to thealgorithms. But considering it as a natural generalization of

careful model selection performed in the experiments, dithear PCA the question arises, how to use nonlinear features for

kernel-based methods exhibit a similarly good performanagata compression, reconstruction, and denoising, applications

Note that we can expect such a result since they use simidé@ammon in linear PCA. This is a nontrivial task, as the results

provided by kernel PCA live in the high-dimensional feature

16The breast cancer domain was obtained from the University Medical CenféP@ce and need not have an exact representation by a single

Inst. of Oncology, Ljubljana, Yugoslavia. Thanks go to M. Zwitter and M. Soklizector in input space. In practice this issue has been alleviated

for providing the data. _ by computing approximate preimages [12], [13], [116].
17A random partition generates a mappig of n to two classes. For this Formallv. one defines a proiection operaten@hich for each
a randomt1 vectorm of lengthn is generated. The positive classes (and the Y, proj perai

negative respectively) are then concatenated. test pointx computes the projection onto the figs{nonlinear)
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Fig. 16. Denoising of USPS data (see text). The left half shewys:the first occurrence of each digit in the test setcond rowthe upper digit with additive
Gaussian noises(= 0.5), following five rows the reconstruction for linear PCA usiig= 1, 4, 16, 64, 256 components, andast five rows the results of the
approximate pre-image approach using the same number of components. The right half shows the same but for “speckle” noise withyprstiabilifigure
from [12]).

principal components, i.e., can approximate it by minimizing
p(z) = [|9(z) - PLo(x)|]” (29)
k
P.®(x) = Z A what can be seen as a special case of the reduced set method
i=1 [150], [13]. The optimization of (29) can be formulated using

‘ ‘ kernel functions. Especially for RBF kernels [cf. (7)] there exists
whereg; == (V' - ®(x)) = >7_, o’k(x, x;). Let us assume an efficient fixed-point iteration. For further details of how to
that the Eigenvector¥ are ordered with decreasing Eigenvalugptimize (29) and for details of the experiments reported below
size. It can be shown that these projections have similar optie reader is referred to [13].
mality properties as linear PCA [12] making them good candi-  Example: The example shown here (taken from [12]) was
dates for the following applications: carried out with Gaussian kernels, minimizing (29). Fig. 16 il-

Denoising  Given a noisyx, map it into®(x), discard lustrates the preimage approach in an artificial denoising task
higher components to obtain,#(x), and on the USPS database. In these experiments, linear and kernel
then compute a preimage Here, the hope PCA were trained with the original data. To the test set

is that the main structure in the data set is 1) additive Gaussian noise with zero mean and standard de-

captured in the firstt directions, and the viations = 0.5 or

remaining components mainly pick up the 2) “speckle” noise, where each pixel is flipped to black or
noise—in this sense, can be thought of as a white with probabilityp = 0.2.

denoised version at. was added. For the noisy test sets, projections onto thekfirst

Compression Given the eigenvectoks’ and a small number jinear and nonlinear components were computed and the recon-
of features/3; of &(x), but notx, compute struction was carried out for each case. The results were com-
a preimage as an approximate reconstructigyred by taking the mean squared distance of each reconstructed
of x. This is useful if% is smaller than the gigit of the noisy test set to its original counterpart.

dimensionality of the input data. ‘ For the optimal number of components in linear and kernel

Interpretation Visualize a nonlinear feature extracféf by pCA, the nonlinear approach did better by a factor of 1.6 for
computing a preimage. the Gaussian noise, and 1.2 for the “speckle” noise (the optimal
This can be achieved by computing a veasatisfying®(z) = number of components were 32 in linear PCA, and 512 and 256

P, ®(x). The hope is that for the kernel used, suchwaill be a in kernel PCA, respectively). Taking identical numbers of com-
good approximation ok in input space. However, 1) suchea ponents in both algorithms, kernel PCA becomes up to eight
will not always exist and 2) if it exists, it need be not unique (ctimes better than linear PCA. Recently, in [116] a similar ap-
[12] and [13]). When the vector @ (x) has no preimage, one proach was used together with sparse kernel PCA on real-world
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images showing far superior performance compared to linear3]
PCA as well.

Other applications of Kernel PCA can be found in [151] for 14]
object detection, and in [4], [119], and [152] for preprocessing [5]
in regression and classification tasks. (6

VIII. CONCLUSION AND DISCUSSION 7

The goal of the present article was to give a simple introduc-
tion into the exciting field of kernel-based learning methods. We
only briefly touched learning theory and feature spaces—omit-
ting many details of VC theory (e.g., [5])—and instead focused
on how to use and work with the algorithms. In the supervised
learning part, we dealt with classification, however, a similar (9]
reasoning leads to algorithms for regression with KFD (e.g.,
[89]), boosting (e.g., [108]) or SVMs (e.qg., [33]).

We proposed a conceptual framework for KFD, boosting an(illo]
SVMs as algorithms that essentially differ in how they handle
the high dimensionality of kernel feature spaces. One catill
think of boosting as a “kernel algorithm” in a space spanned
by the base hypotheses. The problem becomes only tractaljle)
since boosting uses & -norm regularizer, which induces
sparsity, i.e., we essentially only work in a small subspace. In
SVMs and KFD, on the other hand, we use the kernel trick tq13)
only implicitly work in feature space. The three methods use
different optimization strategies, each well suited to maximize
the (average) margin in the respective feature space and [
achieve sparse solutions.

The unsupervised learning part reviewed 1) kernel PCA, a
nonlinear extension of PCA for finding projections that give[is)
useful nonlinear descriptors of the data and 2) the single-class
SVM algorithm that estimates the support (or, more generally,
guantiles) of a data set and is an elegant approach to the outlier
detection problem in high dimensions. Similar unsupervised!6]
single-class algorithms can also be constructed for boosting
[110] or KFD.

Selected real-world applications served to exemplify thatl7]
kernel-based learning algorithms are indeed highly competitive
on a variety of problems with different characteristics.

To conclude, we would like to encourage the reader to followl18]
the presented methodology of (re-)formulating linear, scalay, 4
product based algorithms into nonlinear algorithms to obtain
further powerful kernel based learning machines.
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