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An Introduction to Kernel-Based Learning
Algorithms

Klaus-Robert Müller, Sebastian Mika, Gunnar Rätsch, Koji Tsuda, and Bernhard Schölkopf

Abstract—This paper provides an introduction to support
vector machines (SVMs), kernel Fisher discriminant analysis,
and kernel principal component analysis (PCA), as examples
for successful kernel-based learning methods. We first give a
short background about Vapnik–Chervonenkis (VC) theory and
kernel feature spaces and then proceed to kernel based learning
in supervised and unsupervised scenarios including practical
and algorithmic considerations. We illustrate the usefulness of
kernel algorithms by finally discussing applications such as optical
character recognition (OCR) and DNA analysis.

Index Terms—Boosting, Fisher’s discriminant, kernel methods,
kernel PCA, mathematical programming machines, Mercer ker-
nels, principal component analysis (PCA), single-class classifica-
tion, support vector machines (SVMs).

I. INTRODUCTION

I N THE last years, a number of powerful kernel-based
learning machines, e.g., support vector machines (SVMs)

[1]–[6], kernel Fisher discriminant (KFD) [7]–[10], and kernel
principal component analysis (KPCA) [11]–[13], have been
proposed. These approaches have shown practical relevance
not only for classification and regression problems but also,
more recently, in unsupervised learning [11]–[15]. Successful
applications of kernel-based algorithms have been reported
for various fields, for instance in the context of optical pattern
and object recognition [16]–[18], [153], [19]–[20], text cate-
gorization [21]–[23], time-series prediction [24], [25], [15],
gene expression profile analysis [26], [27], DNA and protein
analysis [28]–[30], and many more.1

The present review introduces the main ideas of kernel algo-
rithms, and reports applications from optical character recogni-
tion (OCR) and DNA analysis. We do not attempt a full treat-
ment of all available literature, rather, we present a somewhat bi-
ased point of view illustrating the main ideas by drawing mainly
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TABLE I
NOTATION CONVENTIONS USED IN THIS PAPER

from the work of the authors and providing—to the best of our
knowledge—reference to related work for further reading. We
hope that it nevertheless will be useful for the reader. It dif-
fers from other reviews, such as the ones of [3], [6], [32]–[34],
mainly in the choice of the presented material: we place more
emphasis on kernel PCA, kernel Fisher discriminants, and on
connections to boosting.

We start by presenting some basic concepts of learning theory
in Section II. Then we introduce the idea ofkernel feature spaces
(Section III) and the original SVM approach, its implementa-
tion and some variants. Subsequently, we discuss otherkernel-
based methodsfor supervised and unsupervised learning in Sec-
tions IV and V. Some attention will be devoted to questions
of model selection(Section VI), i.e., how to properly choose
the parameters in SVMs and other kernel-based approaches. Fi-
nally, we describe several recent and interesting applications in
Section VII and conclude.

II. L EARNING TO CLASSIFY—SOME THEORETICAL

BACKGROUND

Let us start with a general notion of the learning problems that
we consider in this paper, found in Table I. The task of classi-
fication is to find a rule, which, based on external observations,
assigns an object to one of several classes. In the simplest case
there are only two different classes. One possible formalization
of this task is to estimate a function , using
input–output training data pairs generated independent identi-
cally distributed (i.i.d.) according to an unknown probability
distribution

1045–9227/01$10.00 © 2001 IEEE
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Fig. 1. Illustration of the overfitting dilemma: Given only a small sample (left)
either, the solid or the dashed hypothesis might be true, the dashed one being
more complex, but also having a smaller training error. Only with a large sample
we are able to see which decision reflects the true distribution more closely. If
the dashed hypothesis is correct the solid would underfit (middle); if the solid
were correct the dashed hypothesis would overfit (right).

such that will correctly classify unseen examples . An
example is assigned to the class if and to the class

otherwise. The test examples are assumed to be generated
from the same probability distribution as the training
data. The best function that one can obtain is the one mini-
mizing the expected error (risk)

(1)

where denotes a suitably chosen loss function, e.g.,
, where for

and otherwise (the so-called -loss). The same
framework can be applied for regression problems, where

. Here, the most common loss function is thesquared
loss: ; see [35] and [36] for a
discussion of other loss functions.

Unfortunately the risk cannot be minimized directly, since the
underlying probability distribution is unknown. There-
fore, we have to try to estimate a function that iscloseto the
optimal one based on the available information, i.e., the training
sample and properties of the function classthe solution is
chosen from. To this end, we need what is called an induction
principle. A particular simple one consists in approximating the
minimum of the risk (1) by the minimum of theempirical risk

(2)

It is possible to give conditions on the learning machine which
ensure that asymptotically (as ), the empirical risk will
converge toward the expected risk. However, for small sample
sizes large deviations are possible andoverfitting might occur
(see Fig. 1). Then a small generalization error cannot be ob-
tained by simply minimizing the training error (2). One way to
avoid the overfitting dilemma is torestrict the complexity of
the function class that one chooses the functionfrom [3].
The intuition, which will be formalized in the following is that a
“simple” (e.g., linear) function that explains most of the data is
preferable to a complex one (Occam’s razor). Typically one in-
troduces aregularizationterm (e.g., [37]–[40]) to limit the com-
plexity of the function class from which the learning machine
can choose. This raises the problem of model selection (e.g.,
[39] and [41]–[43]), i.e., how to find the optimal complexity of
the function (cf. Section VI).

A specific way of controlling the complexity of a function
class is given by the Vapnik–Chervonenkis (VC) theory and
the structural risk minimization (SRM) principle [3], [5], [44],
[154]. Here the concept of complexity is captured by the VC

Fig. 2. Schematic illustration of (3). The dotted line represents the training
error (empirical risk), the dash-dotted line the upper bound on the complexity
term (confidence). With higher complexity the empirical error decreases but the
upper bound on the risk confidence becomes worse. For a certain complexity of
the function class the best expected risk (solid line) is obtained. Thus, in practice
the goal is to find the best tradeoff between empirical error and complexity.

dimension of the function class that the estimate is
chosen from. Roughly speaking, the VC dimension measures
how many (training) points can be shattered (i.e., separated) for
all possible labelings using functions of the class. Constructing
a nested family of function classes with
nondecreasing VC dimension the SRM principle proceeds as
follows: Let be the solutions of the empirical risk
minimization (2) in the function classes . SRM chooses
the function class (and the function ) such that an upper
bound on the generalization error is minimized which can be
computed making use of theorems such as the following one
(see also Fig. 2).

Theorem 1 ([3], [5]): Let denote the VC dimension of the
function class and let be defined by (2) using the 0/1-
loss. For all and the inequality bounding the risk

(3)

holds with probability of at least for .
Note, this bound is only an example and similar formulations

are available for other loss functions [5] and other complexity
measures, e.g., entropy numbers [45]. Let us discuss (3): the
goal is to minimize the generalization error , which can
be achieved by obtaining a small training error while
keeping the function class as small as possible. Two extremes
arise for (3): 1) a very small function class (like ) yields a
vanishing square root term, but a large training error might re-
main, while 2) a huge function class (like ) may give a van-
ishing empirical error but a large square root term. The best class
is usually in between (cf. Fig. 2), as one would like to obtain a
function that explains the data quite wellandto have a small risk
in obtaining that function. This is very much in analogy to the
bias-variance dilemma scenario described for neural networks
(see, e.g., [46]).

A. VC Dimension in Practice

Unfortunately in practice the bound on the expected error in
(3) is often neither easily computable nor very helpful. Typical
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Fig. 3. Linear classifier and margins: A linear classifier is defined by a
hyperplane’s normal vectorw and an offsetb, i.e., the decision boundary is
fxj(w � x) + b = 0g (thick line). Each of the two halfspaces defined by this
hyperplane corresponds to one class, i.e.,f(x) = sgn((w � x) + b). The
margin of a linear classifier is the minimal distance of any training point to
the hyperplane. In this case it is the distance between the dotted lines and the
thick line.

problems are that the upper bound on the expected test error
might be trivial (i.e., larger than one), the VC dimension of the
function class is unknown or it is infinite (in which case one
would need an infinite amount of training data). Although there
are different, usually tighter bounds, most of them suffer from
similar problems. Nevertheless, bounds clearly offer helpful
theoretical insights into the nature of learning problems.

B. Margins and VC Dimension

Let us for a moment assume that the training sample is sepa-
rable by a hyperplane (see Fig. 3), i.e., we choose functions of
the form

(4)

It was shown (e.g., [3], [44], [154]) that for the class of hyper-
planes the VC dimension itself can be bounded in terms of an-
other quantity, themargin (also Fig. 3). The margin is defined
as the minimal distance of a sample to the decision surface. The
margin in turn can be measured by the length of the weight
vector in (4): as we assumed that the training sample is sepa-
rable we can rescale and such that the points closest to the
hyperplane satisfy (i.e., obtain the so-called
canonical representation of the hyperplane). Now consider two
samples and from different classes with
and , respectively. Then the margin is given
by the distance of these two points, measured perpendicular to
the hyperplane, i.e., . The result
linking the VC dimension of the class of separating hyperplanes
to the margin or the length of the weight vectorrespectively
is given by the following inequalities:

and (5)

where is the radius of the smallest ball around the data (e.g.,
[3]). Thus, if we bound the margin of a function class from

Fig. 4. Two-dimensional classification example. (a) Using the second-order
monomialsx ;

p
2x x andx as features a separation in feature space can be

found using alinearhyperplane. (b) In input space this construction corresponds
to anonlinearellipsoidal decision boundary (figure from [48]).

below, say by , we can control its VC dimension.2 SVMs,
which we shall treat more closely in Section IV-A, implement
this insight. The choice of linear functions seems to be very lim-
iting (i.e., instead of being likely to overfit we are now more
likely to underfit). Fortunately there is a way to have both, linear
modelsanda very rich set of nonlinear decision functions, by
using the tools that will be discussed in the next section.

III. N ONLINEAR ALGORITHMS IN KERNEL FEATURE SPACES

Algorithms in feature spaces make use of the following idea:
via a nonlinear mapping

the data is mapped into a potentially much
higher dimensional feature space. For a given learning
problem one now considers the same algorithm ininstead of

, i.e., one works with the sample

Given this mapped representation asimpleclassification or re-
gression in is to be found. This is also implicitly done for
(one hidden layer) neural networks, radial basis networks (e.g.,
[49]–[52]) or boosting algorithms [53] where the input data is
mapped to some representation given by the hidden layer, the
radial basis function (RBF) bumps or the hypotheses space, re-
spectively.

The so-calledcurse of dimensionalityfrom statistics says es-
sentially that the difficulty of an estimation problem increases
drastically with the dimension of the space, since—in prin-
ciple—as a function of one needs exponentially many pat-
terns to sample the space properly. This well-known statement
induces some doubts about whether it is a good idea to go to a
high-dimensional feature space for learning.

However, statistical learning theory tells us that the contrary
can be true: learning in can be simpler if one uses a low com-
plexity, i.e., simpleclass of decision rules (e.g., linear classi-
fiers). All the variability and richness that one needs to have a
powerful function class is then introduced by the mapping.

2There are some ramifications to this statement, that go beyond the scope
of this work. Strictly speaking, VC theory requires the structure to be defined
a priori, which has implications for the definition of the class of separating
hyperplanes, cf. [47].
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In short: not the dimensionality but the complexity of the func-
tion class matters [3]. Intuitively, this idea can be understood
from the toy example in Fig. 4: in two dimensions a rather com-
plicatednonlineardecision surface is necessary to separate the
classes, whereas in a feature space of second-order monomials
(see, e.g., [54])

(6)

all one needs for separation is alinearhyperplane. In this simple
toy example, we can easily control both: the statistical com-
plexity (by using a simple linear hyperplane classifier) and the
algorithmic complexity of the learning machine, as the feature
space is only three dimensional. However, it becomes rather
tricky to control the latter for large real-world problems. For
instance, consider images of 16 16 pixels as patterns and
fifth-order monomials as mapping—then one would map to a
space that contains all fifth-order products of 256 pixels, i.e.,
to a -dimensional space. So, even if one
could control the statistical complexity of this function class,
one would still run into intractability problems while executing
an algorithm in this space.

Fortunately, for certain feature spacesand corresponding
mappings there is a highly effective trick for computing scalar
products in feature spaces usingkernel functions[1], [3], [55],
[56]. Let us come back to the example from (6). Here, the com-
putation of a scalar product between two feature space vectors,
can be readily reformulated in terms of a kernel function k

k

This finding generalizes:

• For , and the kernel function

k

computes a scalar product in the space of all products of
vector entries (monomials) of and [3], [11].

• If is a continuous kernel of a positive
integral operator on a Hilbert space on a compact
set , i.e.,

k

then there exists a space and a mapping
such that k [3]. This can be

seen directly from Mercer’s theorem [59] saying that any
kernel of a positive integral operator can be expanded in
its Eigenfunctions ( )

k

In this case

is a possible realization.
• Note furthermore that using a particular SV kernel corre-

sponds to animplicit choice of a regularization operator
(cf. [39] and [57]). For translation invariant kernels, the
regularization properties can be expressed conveniently
in Fourier space in terms of the frequencies [58], [60].
For example, Gaussian kernels (7) correspond to a general
smoothness assumption in allth-order derivatives [58].
Vice versa using this correspondence, kernels matching a
certain prior about the frequency content of the data can
be constructed that reflect our prior problem knowledge.

Table II lists some of the most widely used kernel functions.
More sophisticated kernels (e.g., kernels generating splines or
Fourier expansions) can be found in [4], [5], [28], [30], [36],
[58], and [61].

A. Wrapping Up

The interesting point about kernel functions is that the scalar
product can beimplicitly computed in , without explicitly
using or even knowing the mapping. So, kernels allow to
compute scalar products in spaces, where one could otherwise
hardly perform any computations. A direct consequence from
this finding is [11]: every (linear) algorithm that only uses
scalar products can implicitly be executed in by using
kernels, i.e., one can very elegantly construct a nonlinear
version of a linear algorithm.3

In the following sections we use this philosophy for super-
vised and unsupervised learning: by (re-) formulating linear,
scalar product-based algorithms that aresimplein feature space,
one is able to generate powerful nonlinear algorithms, which use
rich function classes in input space.

IV. SUPERVISEDLEARNING

We will now briefly outline the algorithms of SVMs and the
KFD. Furthermore we discuss the Boosting algorithm from the
kernel feature space point of view and show a connection to
SVMs. Finally, we will point out some extensions of these al-
gorithms proposed recently.

A. Support Vector Machines

Let us recall from Section II that the VC dimension of a linear
system, e.g., separating hyperplanes (as computed by a percep-
tron)

sign

can be upper bounded in terms of the margin [cf. (5)]. For sep-
arating hyperplane classifiers the conditions for classification
without training error are

3Even algorithms that operate on similarity measures k generating positive
matrices k(x ; x ) can be interpreted as linear algorithms in some feature
spaceF [4].
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TABLE II
COMMON KERNEL FUNCTIONS: GAUSSIAN RBF (c 2 ), POLYNOMIAL (d 2 ; � 2 ), SIGMOIDAL (�; � 2 ) AND INVERSEMULTIQUADRIC (c 2 ) KERNEL

FUNCTIONS AREAMONG THE MOST COMMON ONES. WHILE RBF AND POLYNOMIAL ARE KNOWN TO FULFILL MERCERSCONDITION, THIS IS NOT

STRICTLY THE CASE FORSIGMOIDAL KERNELS [33]. FURTHER VALID KERNELS PROPOSED IN THECONTEXT OF REGULARIZATION

NETWORKS ARE, E.G., MULTIQUADRIC OR SPLINE KERNELS[39], [57], [58]

As linear function classes are often not rich enough in practice,
we will follow the line of thought of the last section and con-
sider linear classifiers in feature space using dot products. To
this end, we substitute for each training example , i.e.,

sign . In feature space, the conditions for
perfect classification are described as

(8)

The goal of learning is to find and such that the ex-
pected risk is minimized. However, since we cannot obtain the
expected risk itself, we will minimize the bound (3), which con-
sists of the empirical risk and the complexity term. One strategy
is to keep the empirical risk zero by constrainingand to the
perfect separation case, while minimizing the complexity term,
which is a monotonically increasing function of the VC dimen-
sion . For a linear classifier in feature space the VC dimension

is bounded according to [cf. (5)], where
is the radius of the smallest ball around the training data (e.g.,
[3]), which is fixed for a given data set. Thus, we can minimize
the complexity term by minimizing . This can be formu-
lated as a quadratic optimization problem

(9)

subject to (8). However, if the only possibility to access the fea-
ture space is via dot-products computed by the kernel, we can
not solve (9) directly since lies in that feature space. But
it turns out that we can get rid of the explicit usage ofby
forming the dual optimization problem. Introducing Lagrange
multipliers , , one for each of the con-
straints in (8), we get the following Lagrangian:

(10)

The task is to minimize (10) with respect to and to max-
imize it with respect to . At the optimal point, we have the
following saddle point equations:

and

which translate into

and (11)

From the right equation of (11), we find that is contained in
the subspace spanned by the . By substituting (11) into
(10) and by replacing with kernel functions
k , we get the dual quadratic optimization problem:

k

subject to

Thus, by solving the dual optimization problem, one obtains the
coefficients , , which one needs to express the
which solves (9). This leads to the nonlinear decision function

sgn

sgn k

Note that we have up to now only considered the separable case,
which corresponds to an empirical error of zero (cf. Theorem
1). However for noisy data, this might not be the minimum in
the expected risk [cf. (3)] and we might face overfitting effects
(cf. Fig. 1). Therefore a “good” tradeoff between the empirical
risk and the complexity term in (3) needs to be found. Using a
technique which was first proposed in [62] and later used for
SVMs in [2], one introduces slack-variables to relax the hard-
margin constraints

(12)

additionally allowing for some classification errors. The SVM
solution can then be found by 1) keeping the upper bound on
the VC dimension small and 2) by minimizing an upper bound

on the empirical risk,4 i.e., the number of training er-
rors. Thus, one minimizes

4Other bounds on the empirical error, like � are also frequently used
(e.g., [2], [63]).
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where the regularization constant determines the tradeoff
between the empirical error and the complexity term. This leads
to the dual problem:

k (13)

subject to (14)

(15)

From introducing the slack-variables, one gets theboxcon-
straints that limit the size of the Lagrange multipliers: ,

.
1) Sparsity: Most optimization methods are based

on the second-order optimality conditions, so called
Karush–Kuhn–Tucker conditions which state necessary
and in some cases sufficient conditions for a set of variables
to be optimal for an optimization problem. It comes handy
that these conditions are particularly simple for the dual SVM
problem (13) [64]

and

and

and

(16)

They reveal one of the most important property of SVMs: the so-
lution is sparse in , i.e., many patterns are outside the margin
area and the optimal ’s are zero. Specifically, the KKT con-
ditions show that only such connected to a training pattern

, which is either on the margin (i.e., and
) or inside the margin area (i.e., and

) are nonzero. Without this sparsity property, SVM
learning would hardly be practical for large data sets.

2) -SVMs: Several modifications have been proposed to
the basic SVM algorithm. One particular useful modification are

-SVMs [65], originally proposed for regression. In the case of
pattern recognition, they replace the rather unintuitive regular-
ization constant with another constant and yield,
for appropriate parameter choices, identical solutions. Instead
of (13) one solves

k

subject to

The advantage is that this new parameterhas a clearer interpre-
tation than simply “the smaller, the smoother”: under some mild
assumptions (data i.i.d. from continuous probability distribution
[65]) it is asymptotically 1) an upper bound on the number of
margin errors5 and 2) a lower bound on the number of SVs.

5A margin error is a pointx which is either being misclassified or lying
inside the margin area.

3) Computing the Threshold:The threshold can be
computed by exploiting the fact that for all SVs with

, the slack variable is zero. This follows from the
Karush–Kuhn–Tucker (KKT) conditions [cf. (16)]. Thus, for
any support vector with holds

k

Averaging over these patterns yields a numerically stable solu-
tion

k

4) A Geometrical Explanation:Here, we will present an il-
lustration of the SVM solution to enhance intuitive understand-
ings. Let us normalize the weight vector to one (i.e., )
and fix the threshold . Then, the set of all which sepa-
rate the training samples is completely described as

The set is called “version space” [66]. It can be shown that the
SVM solution coincides with the Tchebycheff-center of the ver-
sion space, which is the center of the largest sphere contained
in (cf. [67]). However, the theoretical optimal point in ver-
sion space yielding a Bayes-optimal decision boundary is the
Bayes point, which is known to be closely approximated by
the center of mass [68], [69]. The version space is illustrated
as a region on the sphere as shown in Figs. 5 and 6. If the ver-
sion space is shaped as in Fig. 5, the SVM solution is near to
the optimal point. However, if it has an elongated shape as in
Fig. 6, the SVM solution is far from the optimal one. To cope
with this problem, several researchers [68], [70], [71] proposed
a billiard sampling method for approximating the Bayes point.
This method can achieve improved results, as shown on several
benchmarks in comparison to SVMs.

5) Optimization Techniques for SVMs:To solve the SVM
problem one has to solve the (convex) quadratic programming
(QP) problem (13) under the constraints (14) and (15) [(13) can
be rewritten as maximizing where is
the positive semidefinite matrix k and the
vector of all ones]. As the objective function is convex every
(local) maximum is already a global maximum. However, there
can be several optimal solutions (in terms of the variables)
which might lead to different testing performances.

There exists a huge body of literature on solving quadratic
programs and several free or commercial software packages
(see, e.g., [33], [73], and [74], and references therein). How-
ever, the problem is that most mathematical programming ap-
proaches are either only suitable for small problems or assume
that the quadratic term covered byis very sparse, i.e., most el-
ements of this matrix are zero. Unfortunately this is not true for
the SVM problem and thus using standard codes with more than
a few hundred variables results in enormous training times and
more than demanding memory needs. Nevertheless, the struc-
ture of the SVM optimization problem allows to derive specially
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Fig. 5. An example of the version space where the SVM works fine. The center
of mass (}) is close to the SVM solution (�). Figure taken from [72].

Fig. 6. An example of the version space where SVM works poorly. The version
space has an elongated shape and the center of mass (}) is far from the SVM
solution (�). Figure taken from [72].

tailored algorithms which allow for fast convergence with small
memory requirements even on large problems. Here we will
briefly consider three different approaches. References, con-
taining more details and tricks can be found, e.g., in [6] and
[33].

a) Chunking: A key observation in solving large scale
SVM problems is the sparsity of the solution. Depending on
the problem, many of the optimal will either be zero or on
the upper bound . If one knew beforehand which were zero,
the corresponding rows and columns could be removed from the
matrix without changing the value of the quadratic form. Fur-
ther, a point can only be optimal for (13) if and only if it fulfills
the KKT conditions [cf. (16)]. In [64] a method called chunking
is described, making use of the sparsity and the KKT condi-
tions. At every step chunking solves the problem containing
all nonzero plus some of the violating the KKT condi-
tions. The size of this problem varies but is finally equal to the
number of nonzero coefficients. While this technique is suit-
able for fairly large problems it is still limited by the maximal
number of support vectors that one can handle and it still re-
quires a quadratic optimizer to solve the sequence of smaller
problems. A free implementation can be found, e.g., in [75].

b) Decomposition Methods:Those methods are similar
in spirit to chunking as they solve a sequence of small QPs as
well. But here the size of the subproblems is fixed. They are
based on the observations of [76], [77] that a sequence of QPs
which at least always contains one sample violating the KKT
conditions will eventually converge to the optimal solution. It

was suggested to keep the size of the subproblems fixed and to
add and remove one sample in each iteration. This allows the
training of arbitrary large data sets. In practice, however, the
convergence of such an approach is very slow. Practical imple-
mentations use sophisticated heuristics to select several patterns
to add and remove from the subproblem plus efficient caching
methods. They usually achieve fast convergence even on large
datasets with up to several thousands of SVs. A good quality
(free) implementation is SVM [78]. A quadratic optimizer
is still required and contained in the package. Alternatively, the
package [75] also contains a decomposition variant.

c) Sequential Minimal Optimization (SMO):This
method proposed by [79] can be viewed as the most extreme
case of decomposition methods. In each iteration it solves a
quadratic problem of size two. This can be done analytically
and thus no quadratic optimizer is required. Here the main
problem is to chose a good pair of variables to optimize in each
iteration. The original heuristics presented in [79] are based on
the KKT conditions and there has been some work (e.g., [80])
to improve them. The implementation of the SMO approach
is straightforward (pseudocode in [79]). While the original
work was targeted at an SVM for classification, there are now
also approaches which implement variants of SMO for SVM
regression (e.g., [33] and [36]) and single-class SVMs (cf.
below, [14]).

d) Other Techniques:Further algorithms have been pro-
posed to solve the SVM problem or a close approximation. For
instance, the Kernel–Adatron [81] is derived from the Adatron
algorithm by [82] proposed originally in a statistical mechanics
setting. It constructs a large margin hyperplane using online
learning. Its implementation is very simple. However, its draw-
back is that is does not allow for training errors, i.e., it is only
valid for separable data sets. In [83], a slightly more general ap-
proach for data mining problems is considered.

e) Codes: A fairly large selection of optimization codes
for SVM classification and regression may be found on the
web at [84] together with the appropriate references. They
range from simple MATLAB implementation to sophisticated
C, C or FORTRAN programs. Note that most of these
implementations are for noncommercial use only.

B. Kernel Fisher Discriminant

The idea of the KFD (e.g., [7], [9], and [10]) is to solve the
problem of Fisher’s linear discriminant [85], [86] in a kernel fea-
ture space , thereby yielding a nonlinear discriminant in input
space. In the linear case, Fisher’s discriminant aims at finding
a linear projections such that the classes are well separated (cf.
Fig. 7). Separability is measured by two quantities: How far are
the projected means apart (should be large) and how big is the
variance of the data in this direction (should be small). This can
be achieved by maximizing the Rayleigh coefficient

(17)

of between and within class variance with respect towhere
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Fig. 7. Illustration of the projections of PCA and Fisher’s discriminant for a
toy data set. It is clearly seen that PCA is purely descriptive, whereas the Fisher
projection is discriminative.

and

Here and denote the sample mean and the index set
for class , respectively. Note that under the assumption that
the class distributions are (identically distributed) Gaussians,
Fisher’s discriminant is Bayes optimal; it can also be general-
ized to the multiclass case.6 To formulate the problem in a kernel
feature space one can make use of a similar expansion as (11)
in SVMs for , i.e., one can express in terms of mapped
training patterns [7]

(18)

Substituting for all in (17) and plugging in (18), the
optimization problem for the KFD in the feature space can then
be written as [8]

(19)

where , ,
, , and

k . The projection of a test point onto the discriminant
is computed by

k

Finally, to use these projections in classification one needs to
find a suitable threshold which can either be chosen as the mean
of the average projections of the two classes or, e.g., by training
a linear SVM on the projections.

6This can be done with kernel functions as well and has explicitly been car-
ried out, e.g., in [9], [10]. However, most further developments for KFD do not
easily carry over to the multiclass case, e.g., resulting in integer programming
problems.

As outlined before, the dimension of the feature space is equal
to or higher than the number of training sampleswhich makes
regularization necessary. In [7] it was proposed to add a multiple
of, e.g., the identity or the kernel matrix to , penalizing

or , respectively (see also [87] and [88]).
To maximize (19) one could either solve the general-

ized Eigenproblem , selecting the Eigenvector
with maximal Eigenvalue , or, equivalently, compute

. However, as the matrices and
scale with the number of training samples and the solutions are
nonsparse this is only feasible for moderate. One possible
solution is to transform KFD into a convex quadratic program-
ming problem [89] which allows to derive a sparse variant
of KFD and a more efficient, sparse-greedy approximation
algorithm [90]. Recalling that Fisher’s discriminant tries to
minimize the variance of the data along the projection whilst
maximizing the distance between the average outputs for each
class, the following quadratic program does exactly this:

P

subject to

for

(20)

for , and . Here P is a regularizer as men-
tioned before and is one for belonging to class and
zero otherwise. It is straightforward to show, that this program is
equivalent to (19) with the same regularizer added to the matrix

[89]. The proof is based on the facts that 1) the matrixis
rank one and 2) that the solutionsto (19) are invariant under
scaling. Thus one can fix the distance of the means to some ar-
bitrary, positive value, say two, and just minimize the variance.
The first constraint, which can be read as ,

, pulls the output for each sample to its class-label.
The term minimizes the variance of the error committed,
while the constraints ensure that the average output for
each class is the label, i.e., for labels the average distance of
the projections is two. For one obtains the original Fisher
algorithm in feature space.

1) Optimization: Besides a more intuitive understanding of
the mathematical properties of KFD [89], in particular in rela-
tion to SVMs or the relevance vector machine (RVM) [91], the
formulation (20) allows to derive more efficient algorithms as
well. Choosing a -norm regularizer P we obtain
sparse solutions [sparse KFD (SKFD)].7 By going even further
and replacing the quadratic penalty on the variableswith an

-norm as well, we obtain a linear program which can be very
efficiently optimized using column generation techniques (e.g.,
[92]) [linear sparse KFD (LSKFD)]. An alternative optimization
strategy arising from (20) is to iteratively construct a solution to
the full problem as proposed in [90]. Starting with an empty so-
lution one adds in each iteration one pattern to the expansion
(18). This pattern is chosen such that it (approximately) gives

7Roughly speaking, a reason for the induced sparseness is the fact that vectors
far from the coordinate axes are “larger” with respect to the` -norm than with
respect tò -norms withp > 1. For example, consider the vectors(1; 0) and
(1=

p
2; 1=

p
2). For the two norm,k(1; 0)k = k(1=p2; 1=p2)k = 1, but

for the` -norm,1 = k(1; 0)k < k(1=p2; 1=p2)k =
p
2. Note that using

the` -norm as regularizer the optimal solution is always a vertex solution (or
can be expressed as such) and tends to be very sparse.



MÜLLER et al.: AN INTRODUCTION TO KERNEL-BASED LEARNING ALGORITHMS 189

the largest decrease in the objective function (other criteria are
possible). When the change in the objective falls below a prede-
fined threshold the iteration is terminated. The obtained solution
is sparse and yields competitive results compared to the full so-
lution. The advantages of this approach are the smaller memory
requirements and faster training time compared to quadratic
programming or the solution of an Eigenproblem.

C. Connection between Boosting and Kernel Methods

We will now show a connection of boosting to SVMs and
KFD. Let us start with a very brief review of Boosting methods,
which does not claim to be complete—for more details see, e.g.,
[53], [93]–[97]. The first boosting algorithm was proposed by
Schapire [98]. This algorithm was able to “boost” the perfor-
mance of a weak PAC learner [99] such that the resulting algo-
rithm satisfies the strong PAC learning criteria [100].8 Later,
Freund and Schapire found an improved PAC boosting algo-
rithm—called AdaBoost [53]—which repeatedly calls a given
“weak learner” (also: base learning algorithm)and finally pro-
duces a master hypothesiswhich is a convex combination of
the functions produced by the base learning algorithm, i.e.,

and , .
The given weak learner is used with different distributions

(where , )
on the training set, which are chosen in such a way that patterns
poorly classified by the current master hypothesis are more em-
phasized than other patterns.

Recently, several researchers [101]–[104] have noticed
that AdaBoost implements a constraint gradient descent (co-
ordinate-descent) method on an exponential function of the
margins. From this understanding, it is apparent that other
algorithms can be derived [101]–[104].9 A slight modification
of AdaBoost—called Arc-GV—has been proposed in [105].10

For Arc-GV it can be proven that it asymptotically (with the
number of iterations) finds a convex combination of all possible
base hypotheses that maximizes the margin—very much in
spirit to the hard margin SVM mentioned in Section IV-A.
Let be the set of hypotheses, from
which the base learner can potentially select hypotheses. Then
the solution of Arc-GV is the same as the one of the following
linear program [105], that maximizes the smallest margin:

subject to for (21)

Let us recall that SVMs and KFD implicitly compute scalar
products in feature space with the help of the kernel trick. Omit-
ting the bias ( ) for simplicity, the SVM minimization of

8A method that builds a strong PAC learning algorithm from a weak PAC
learning algorithm is called a PAC boosting algorithm [96].

9See also [96] for an investigation in which potentials lead to PAC boosting
algorithms.

10A generalization of Arc-GV using slack variables as in (12) can be found
in [106], [92].

(9) subject to (8) can be restated as a maximization of the margin
(cf. Fig. 3)

subject to P for

(22)
where dim and P is the operator projecting onto the
th coordinate in feature space. The use of the-norm of

in the last constraint implies that the resulting hyperplane is
chosen such that the minimum-distance of a training pat-
tern to the hyperplane is maximized (cf. Section II-B). More
generally, using an arbitrary -norm constraint on the weight
vector leads to maximizing the-distance between hyperplane
and training points [107], where . Thus, in
(21) one maximizes the minimum -distance of the training
points to the hyperplane.

On the level of the mathematical programs (22) and (21), one
can clearly see the relation between boosting and SVMs. The
connection can be made even more explicit by observing that
any hypothesis set implies a mapping by

and therefore also a kernel k
, which could in principle be used for SVM

learning. Thus, any hypothesis setspans a feature space.
Furthermore, for any feature space, which is spanned by
some mapping , the corresponding hypothesis setcan be
readily constructed by P .

Boosting, in contrast to SVMs, performs the computationex-
plicitly in feature space. This is well known to be prohibitive, if
the solution is not sparse, as the feature space might be very
high dimensional. As mentioned in Section IV-B (cf. Footnote
7), using the -norm instead of the -norm, one can expect to
get sparse solutions in.11 This might be seen as one important
ingredient for boosting, as it relies on the fact that there are only
a few hypotheses/dimensions P needed to express the
solution, which boosting tries to find during each iteration. Ba-
sically, boosting considers only the most important dimensions
in feature space and can this way be very efficient.

D. Wrapping Up

SVMs, KFD, and boosting work in very high-dimensional
feature spaces. They differ, however, in how they deal with
the algorithmic problems that this can cause. One can think
of boosting as an SV approach in a high-dimensional feature
space spanned by the base hypothesis of some function set.
The problem becomes tractable since boosting uses effectively
a -norm regularizer. This induces sparsity, hence one never
really works in the full space, but always in a small subspace.
Vice versa, one can think of SVMs and KFD as a “boosting
approach” in a high-dimensional space. There we use the

11Note that the solution of SVMs is under rather mild assumption not sparse
in w = � �(x ) [108], but in���.
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kernel trick and therefore never explicitly work in the feature
space. Thus, SVMs and KFD get away without having to use

-norm regularizers; indeed, theycouldnot use them on , as
the kernel only allows computation of the-norm in feature
space. SVM and boosting lead to sparse solutions (as does KFD
with the appropriate regularizer [89]), although in different
spaces, and both algorithms are constructed to exploit the
form of sparsity they produce. Besides providing insight, this
correspondence has concrete practical benefits for designing
new algorithms. Almost any new development in the field of
SVMs can be translated to a corresponding boosting algorithm
using the -norm instead of the -norm and vice versa (cf.
[106], [109], [110], [155]).

V. UNSUPERVISEDLEARNING

In unsupervised learning only the data is
given, i.e., the labels are missing. Standard questions of unsu-
pervised learning are clustering, density estimation, and data de-
scription (see, e.g., [51] and [111]). As already outlined above,
the kernel trick cannot only be applied in supervised learning
scenarios, but also for unsupervised learning,given that the base
algorithm can be written in terms of scalar products.In the fol-
lowing sections we will first review one of the most common
statistical data analysis algorithm, PCA, and explain its “kernel-
ized” variant: kernel PCA (see [11]). Subsequently, single-class
classification is explained. Here the support of a given data set
is being estimated (see, e.g., [14], [110], [112], and [113]). Re-
cently, single-class SVMs are frequently used in outlier or nov-
elty detection applications.

A. Kernel PCA

The basic idea of PCA is depicted in Fig. 8. For-dimen-
sional data, a set of orthogonal directions—capturing most of
the variance in the data—is computed, i.e., the firstprojec-
tions ( ) allow to reconstruct the data with min-
imal quadratic error. In practice one typically wants to describe
the data with reduced dimensionality by extracting a few mean-
ingful components, while at the same time one is retaining most
existing structure in the data (see, e.g., [114]). Since PCA is a
linear algorithm it is clearly beyond its capabilities to extract
nonlinear structures in the data as, e.g., the one observed in
Fig. 8. It is here, where the kernel-PCA algorithm sets in. To de-
rive kernel-PCA we first map the data into
a feature space (cf. Section III) and compute the covariance
matrix

The principal components are then computed by solving the
Eigenvalue problem: find with

(23)

Fig. 8. By using a kernel function, kernel-PCA is implicitly performing a
linear PCA in some high-dimensional feature space, that is nonlinearly related
to the input space. (a) Linear PCA in the input space is not sufficient to describe
the most interesting direction in this toy example. (b) Using a suitable nonlinear
mapping� and performing linear PCA on the mapped patterns (kernel PCA),
the resultingnonlineardirection in the input space can find the most interesting
direction (figure from [11]).

Furthermore, as can be seen from (23) all Eigenvectors with
nonzero Eigenvalue must be in the span of the mapped data,
i.e., span . This can be written as

By multiplying with from the left, (23) reads

for all

Defining an -matrix

k (24)

one computes an Eigenvalue problem for the expansion coeffi-
cients , that is now solely dependent on the kernel function

The solutions further need to be normalized by im-
posing in . Also—as in every PCA algo-
rithm—the data needs to be centered in. This can be done by
simply substituting the kernel-matrix with

where ; for details see [11].
For extracting features of a new patternwith kernel PCA

one simply projects the mapped pattern onto

k (25)
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Fig. 9. Linear PCA, or, equivalently, kernel-PCA using k(x; y) = (x � y).
Plotted are two linear PCA features (sorted according to the size of the
Eigenvalues) on an artificial data set. Similar gray values denote areas of
similar feature value [cf. (25)]. The first feature (left) projects to the direction
of maximal variance in the data. Clearly, one cannot identify the nonlinear
structure in the underlying data using linear PCA only (figure from [118]).

Note that in this algorithm for nonlinear PCA the nonlinearity
enters the computation only at two points that do not change
the nature of the algorithm: 1) in the calculation of the matrix
elements of (24) and 2) in the evaluation of the expansion
(25). So, for obtaining the kernel-PCA components one only
needs to solve a similar linear eigenvalue problem as before for
linear PCA, the only difference being that one has to deal with an

problem instead of an problem. Clearly, the size of
this problem becomes problematic for large. Reference [115]
proposes to solve this by using a sparse approximation of the
matrix which still describes the leading Eigenvectors suffi-
ciently well. In [116] a sparse kernel PCA approach is proposed,
set within a Bayesian framework. Finally, the approach given in
[117] places a -regularizer into the (kernel) PCA problem with
the effect of obtaining sparse solutions as well at a comparably
low computational cost. Figs. 9–11 show examples for feature
extraction with linear PCA and kernel-PCA for artificial data
sets. Further applications of kernel PCA for real-world data can
be found in Section VII-A-1 for OCR or in Section VII-C-1 for
denoising problems, other applications are found in, e.g., [6],
[12], [119].

B. Single-Class Classification

A classical unsupervised learning task is density estima-
tion. Assuming that the unlabeled observations
were generated i.i.d. according to some unknown distribution

, the task is to estimate its density. However, there are
several difficulties to this task. First, a density need not always
exist—there are distributions that do not possess a density.
Second, estimating densities exactly is known to be a hard
task. In many applications it is enough to estimate the support
of a data distribution instead of the full density. Single-class
SVMs avoid solving the harder density estimation problem and
concentrate on the simpler task [3], i.e., estimating quantiles of
the multivariate distribution, i.e., its support. So far there are
two independent algorithms to solve the problem in a kernel
feature space. They differ slightly in spirit and geometric notion
[113], [14]. It is, however, not quite clear which of them is
to be preferred in practice (cf. Figs. 12 and 13). One solution
of the single-class SVM problem by Tax and Duin [113] uses
sphereswith soft margins to describe the data in feature space,
close in spirit to the algorithm of [120]. For certain classes of

Fig. 10. The first four nonlinear features of Kernel-PCA using a sigmoidal
Kernel on the data set from Fig. 9. The Kernel-PCA components capture the
nonlinear structure in the data, e.g., the first feature (upper left) is better adapted
to the curvature of the data than the respective linear feature from Fig. 9 (figure
from [118]).

Fig. 11. The first eight nonlinear features of Kernel-PCA using a RBF Kernel
on a toy data set consisting of three Gaussian clusters (see [11]). Upper left:
the first and second component split the data into three clusters. Note that
kernel-PCA is not primarily built to achieve such a clustering. Rather it tries to
find a good description of the data in feature space and in this case the cluster
structure extracted has the maximal variance in feature space. The higher
components depicted split each cluster in halves (components 3–5), finally
features 6–8 achieve orthogonal splits with respect to the previous splits (figure
from [11]).

kernels, such as Gaussian RBF ones, this sphere single-class
SVM algorithm can be shown to be equivalent to the second
Ansatz which is due to Schölkopfet al. [14]. For brevity we
will focus on this second approach as it is more in the line
of this review since it uses margin arguments. It computes a
hyperplane in feature space such that a prespecified fraction of
the training example will lie beyond that hyperplane, while at
the same time the hyperplane has maximal distance (margin) to
the origin. For an illustration see Fig. 12. To this end, we solve
the following quadratic program [14]:

(26)

subject to (27)

Here, is a parameter akin to the one described above
for the case of pattern recognition. Since nonzero slack vari-
ables are penalized in the objective function, we can expect
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Fig. 12. Illustration of single-class idea. Solving (26), a hyperplane inF

is constructed that maximizes the distance to the origin while allowing for�

outliers.

Fig. 13. Illustration of single-class idea. Construction of the smallest soft
sphere inF that contains the data.

that if and solve this problem, then the decision function
sgn will be positive for most examples

contained in the training set, while the SV type regularization
term will still be small. The actual tradeoff between these
two goals is controlled by. Deriving the dual problem, the so-
lution can be shown to have a SV expansion (again, patterns
with nonzero are called SVs)

sgn k

where the coefficients are found as the solution of the dual
problem

k

subject to (28)

This problem can be solved with standard QP routines. It does,
however, possess features that sets it apart from generic QPs,
most notably the simplicity of the constraints. This can be ex-
ploited by applying a variant of SMO developed for this purpose
[14].

The offset can be recovered by exploiting that for any
which is not at the upper or lower bound, the corresponding
pattern satisfies k .

Note that if approaches zero, the upper boundaries on the
Lagrange multipliers tend to infinity, i.e., the first inequality
constraint in (28) becomes void. The problem then resembles
the correspondinghard marginalgorithm, since the penaliza-
tion of errors becomes infinite, as can be seen from the primal
objective function (26). It can be shown that if the data set is sep-
arable from the origin, then this algorithm will find the unique
supporting hyperplane with the properties that it separates all
data from the origin, and its distance to the origin is maximal
among all such hyperplanes. If, on the other hand,equals one,
then the constraints alone only allow one solution: the one where
all are at the upper bound . In this case, for kernels
with integral one, such as normalized versions of (7), the de-
cision function corresponds to a thresholded Parzen windows
estimator. For the parameterone can show that it controls the
fraction of errors and SVs (along the lines of Section IV-A).

Theorem 2 [14]: Assume the solution of (27) satisfies .
The following statements hold:

1) is an upper bound on the fraction of outliers.
2) is a lower bound on the fraction of SVs.
3) Suppose the data were generated independently from a

distribution which does not contain discrete compo-
nents. Suppose, moreover, that the kernel is analytic and
nonconstant. When the numberof samples goes to in-
finity, with probability one, equals both the fraction of
SVs and the fraction of outliers.

We have thus described an algorithm which will compute a
region that captures a certain fraction of the training examples.
It is a “nice” region, as it will correspond to a small value of

, thus the underlying function will be smooth [58]. How
about test examples? Will they also lie inside the computed re-
gion? This question is the subject of single-class generalization
error bounds [14]. Roughly, they state the following: suppose
the estimated hyperplane has a small and separates part
of the training set from the origin by a certain margin .
Then the probability thattestexamples coming from the same
distribution lie outside of a slightlylarger region will not be
much larger than the fraction of training outliers.

Fig. 14 displays two-dimensional (2-D) toy examples, and
shows how the parameter settings influence the solution. For
further applications, including an outlier detection task in hand-
written character recognition, cf. [14].

VI. M ODEL SELECTION

In kernel methods discussed so far, the choice of the kernel
has a crucial effect on the performance, i.e., if one does not
choose the kernel properly, one will not achieve the excellent
performance reported in many papers.Model selectiontech-
niques provide principled ways to select a proper kernel. Usu-
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Fig. 14. A single-class SVM using RBF kernel (7) applied to a toy problem; domain:[�1; 1] . First two pictures:Note how in both cases, at least a fraction of
� of all examples is in the estimated region (cf. table). The large value of� causes the additional data points in the upper left corner to have almost no influence
on the decision function. For smaller values of�, such as 0.1(third picture),the points cannot be ignored anymore. Alternatively, one can force the algorithm to
take these “outliers” into account by changing the kernel width (7): in thefourth picture,usingc = 0:1; � = 0:5, the data is effectively analyzed on a different
length scale which leads the algorithm to consider the outliers as meaningful points. Figure taken from [14].

ally, the candidates of optimal kernels are prepared using some
heuristic rules, and the one which minimizes a given criterion
is chosen. There are three typical ways for model selection with
different criteria, each of which is a prediction of the general-
ization error

1) Bayesian evidence framework:The training of a SVM
is interpreted as Bayesian inference, and the model selec-
tion is done by maximizing the marginal likelihood (i.e.,
evidence), e.g., [91] and [121].

2) PAC: The generalization error is upper bounded using a
capacity measure depending both on the weights and the
model, and these are optimized to minimize the bound.
The kernel selection methods for SVM following this ap-
proach are reported, e.g., in [36], [122], and [123].

3) Cross validation: Here, the training samples are divided
to subsets, each of which have the same number of
samples. Then, the classifier is trained-times: In the th
( ) iteration, the classifier is trained on all
subsets except theth one. Then the classification error is
computed for theth subset. It is known that the average
of these errors is a rather good estimate of the gener-
alization error [124]. The extreme case, whereis equal
to the number of training samples, is calledleave-one-out
cross validation. Note that bootstrap [125], [126] is also
a principled resampling method which is often used for
model selection.

Other approaches, namely asymptotic statistical methods
such as AIC [41] and NIC [43] can be used. However, since
these methods need a large amount of samples by assumption,
they have not been in use for kernel methods so far. For 1)
and 2), the generalization error is approximated by expressions
that can be computed efficiently. For small sample sizes,
these values are sometimes not very accurate, but it is known
that nevertheless often acceptable good models are selected.
Among the three approaches, the most frequently used method
is 3) [124], but the problem is that the computational cost is
the highest, because the learning problem must be solved
times. For SVM, there is an approximate way to evaluate the

-fold cross validation error (i.e., the leave-one-out classi-
fication error) calledspan bound[127]. If one assumes that

the support vectors do not change even when a sample is left
out, the leave-one-out classification result of this sample can
be computed exactly. Under this assumption, we can obtain
an estimate of the leave-one-out error—without retraining the
SVM many times. Although this assumption is rather crude and
not true in many cases, the span bound approach gives a close
approximation of the true leave-one-out error in experiments.
For KFD there exists a similar result.

Now we would like to describe a particular efficient model
selection method that has in practice often been used [7], [89],
[102], [128]–[130] in conjunction with the benchmark data sets
described in Section VII-B.

In model selection for SVMs and KFD we have to deter-
mine the kernel parameters [one (RBF) or more (e.g., polyno-
mial kernel)] and the regularization constantor , while for
Boosting one needs to choose the model-parameters of the base
learner, a regularization constant and the number of boosting it-
erations. Given a certain benchmark data set, one usually has a
number, say (e.g., 100), realizations, i.e., splits into training
and test set, available (cf. Section VII-B). The different splits
are necessary to average the results in order to get more reliable
estimates of the generalization error.

One possibility to do model-selection would be to consider
each realization independently from all others and to perform
the cross-validation procedure times. Then, for each realiza-
tion one would end-up with different model parameters, as the
model selection on each realization will typically have various
results.

It is less computationally expensive to have only one model
for all realizations of one data set: To find this model, we run
a five-fold-cross validation procedure only on a few, say five,
realizations of the data set. This is done in two stages: first a
global search (i.e., over a wide range of the parameter space)
is done to find a good guess of the parameter, which becomes
more precise in the second stage. Finally, the model parameters
are computed as the median of the five estimations and are used
throughout the training on all realization of the data set. This
way of estimating the parameters is computationally still quite
expensive, but much less expensive than the full cross validation
approach mentioned above.



194 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

Fig. 15. Typical handwritten digits from the USPS benchmark data set with 7291 training and 2007 test patterns (16� 16 gray scale images).

TABLE III
CLASSIFICATION ERROR IN % FOR OFF-LINE HANDWRITTEN CHARACTER

RECOGNITION ON THEUSPSWITH 7291 PATTERNS. INVARIANT SVMS ARE

ONLY SLIGHTLY BELOW THE BEST EXISTING RESULTS (PARTS OF THE

TABLE ARE FROM [136]). THIS IS EVEN MORE REMARKABLE SINCE IN

[135]–[137],A LARGER TRAINING SET WAS USED, CONTAINING SOME

ADDITIONAL MACHINE-PRINTED DIGITS WHICH HAVE BEEN FOUND TO

IMPROVE THEACCURACY

VII. A PPLICATIONS

This section describes selected12 interesting applications of
supervised and unsupervised learning with kernels. It serves to
demonstrate that kernel-based approaches achieve competitive
results over a whole range of benchmarks with different noise
levels and robustness requirements.

A. Supervised Learning

1) OCR: Historically, the first real-world experiments of
SVMs13 —all done on OCR benchmarks (see Fig. 15)—ex-
hibited quite high accuracies for SVMs [2], [120], [4], [131]
comparably to state-of-the-art results achieved with convolu-
tive multilayer perceptrons [132]–[135]. Table III shows the
classification performance of SVMs in comparison to other
state-of-the art classifiers on the United States Postal Service
(USPS) benchmark. Plain SVM give a performance very
similar to other state-of-the-art methods. However, SVMs can
be strongly improved by using prior knowledge. For instance in
[4] virtual support vectors have been generated by transforming
the set of support vectors with an appropriate invariance
transformation and retraining the machine on these vectors.
Furthermore one can structure kernels such that they induce
local invariances like translations, line thickening or rotations
or that, e.g., products of neighboring pixels in an image [131],
that are thought to contain more information, are emphasized.
So, prior knowledge can be used for engineering a larger data
set or problem specific kernels (see also Section VII-A2 for
an application of this idea to DNA analysis). In a two stage

12Note that for our own convenience we have biased the selection toward
applications pursued by the IDA group while adding abundant references to
other work.

13performed at AT&T Bell Labs.

process we also used kernel-PCA to extract features from the
USPS data in the first step. A subsequent linear classification
on these nonlinear features allowed to achieve an error rate
of 4%, which is better by a factor of two than operating on
linear PCA features (8.7%, cf. [11]). A benchmark problem
larger than the USPS data set (7291 patterns) was collected
by NIST and contains 120 000 handwritten digits. Invariant
SVMs achieved the record error rate of 0.6% [18], [153] on
this challenging and more realistic data set, better than tangent
distance (1.1%) and convolutional neural networks (LeNet
5: 0.9%). With an error rate of 0.7%, an ensemble of LeNet
4 networks that was trained on a vast number of artificially
generated patterns (using invariance transformations) almost
matches the performance of the best SVM [134].

2) Analyzing DNA Data:The genomic text contains un-
translated regions and so-called coding sequences (CDS) that
encode proteins. In order to extract protein sequences from
nucleotide sequences, it is a central problem in computational
biology to recognize the translation initiation sites (TIS) from
which coding starts to determine which parts of a sequence will
be translated and which not.

Coding sequences can in principle be characterized with
alignment methods that use homologous proteins (e.g., [138])
or intrinsic properties of the nucleotide sequence that are
learned for instance with hidden Markov models (e.g., [139]).
A radically different approach that has turned out to be even
more successful is to model the task of finding TIS as a
classification problem (see, e.g., [28] and [140]). A potential
start codon is typically a ATG14 triplet. The classification task
is therefore to decide whether or not a binary coded (fixed
length) sequence window15 around the ATG indicates a true
TIS. The machine learning algorithm, for example a neural
network [140] or an SVM [28] gets a training set consisting
of an input of binary coded strings in a window around the
ATG together with a label indicating true/false TIS. In contrast
to alignment methods, both neural networks and the SVM
algorithm are finding important structure in the data by learning
in the respective feature space to successfully classify from the
labeled data.

As indicated in Section VII-A1, one can incorporate prior
knowledge to SVMs, e.g., by using a proper feature space.
In particular in the task of TIS recognition it turned out to be
very helpful to include biological knowledge by engineering an
appropriate kernel function [28]. We will give three examples

14DNA has a four-letter alphabet: A, C, G, T.
15We define the input space by the same sparse bit-encoding scheme as used

by Pedersen and Nielsen (personal communication): each nucleotide is encoded
by five bits, exactly one of which is set. The position of the set bit indicates
whether the nucleotide is A, C, G, or T, or if it is unknown. This leads to an
input space of dimensionn = 1000 for a symmetric window of size 100 to the
left and right of the ATG sequence.
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for kernels that are particularly useful for start codon recogni-
tion. While certain local correlations are typical for TIS, de-
pendencies between distant positions are of minor importance
or area priori known to not even exist. We want the feature
space to reflect this. Thus, we modify the kernel utilizing a
technique that was originally described for OCR in [131]: At
each sequence position, we compare the two sequences locally,
within a small window of length around that position.
We count matching nucleotides, multiplied with weightsin-
creasing from the boundaries to the center of the window. The
resulting weighted counts are taken to theth power

win match

where reflects the order of local correlations (within
the window) that we expect to be of importance. Here,
match is one for matching nucleotides at position

and zero otherwise. The window scores computed with
win are summed over the whole length of the sequence.
Correlations between up to windows are taken into account
by applying potentiation with to the resulting sum

k win

We call this kernel locality-improved (contrary to a plain poly-
nomial kernel), as it emphasizeslocal correlations.

In an attempt to further improve performance we aimed to in-
corporate another piece of biological knowledge into the kernel,
this time concerning the codon-structure of the coding sequence.
A codon is a triplet of adjacent nucleotides that codes for one
amino acid. By definition the difference between a true TIS and
a pseudosite is that downstream of a TIS there is CDS (which
shows codon structure), while upstream there is not. CDS and
noncoding sequences show statistically different compositions.
It is likely that the SVM exploits this difference for classifica-
tion. We could hope to improve the kernel by reflecting the fact
that CDS shifted by three nucleotides still looks like CDS. There-
fore, we further modify the locality-improved kernel function to
account for this translation-invariance. In addition to counting
matching nucleotides on corresponding positions, we also count
matches that are shifted by three positions. We call this kernel
codon-improved. Again, it can be shown to be a valid mercer
kernel function by explicitly deriving the monomial features.

A third direction for the modification of the kernel function
is obtained by the Salzberg method, where we essentially rep-
resent each data point by a sequence of log odd scores relating,
individually for each position, two probabilities: first, how likely
the observed nucleotide at that position derives from a true TIS
and second, how likely that nucleotide occurs at the given posi-
tion relative to any ATG triplet. We then proceed analogously to
the locality-improved kernel, replacing the sparse bit represen-
tation by the sequence of these scores. As expected, this leads
to a further increase in classification performance. In the strict
sense this is not a kernel but corresponds to preprocessing.

TABLE IV
COMPARISON OFCLASSIFICATION ERRORS(MEASURED ON THETEST SETS)

ACHIEVED WITH DIFFERENTLEARNING ALGORITHMS. FOR DETAILS SEE TEXT

The result of an experimental comparison of SVMs using
these kernel functions with other approaches are summarized in
Table IV. All results are averages over six data partitions (about
11 000 patterns for training and 3000 patterns for testing). SVMs
are trained on 8000 data points. An optimal set of model-param-
eters is selected according to the error on the remaining training
data and the average errors on the remaining test set are reported
in Table IV. Note that the windows consist of nucleotides.
The NN results are those achieved by Pedersen and Nielsen
([140], personal communication). There, model selection seems
to have involved test data, which might lead to slightly over-op-
timistic performance estimates. Positional conditional prefer-
ence scores are calculated analogously to Salzberg [141], but
extended to the same amount of input data also supplied to the
other methods. Note that the performance measure shown de-
pends on the value of the classification function threshold. For
SVMs, the thresholds are by-products of the training process;
for the Salzberg method, “natural” thresholds are derived from
prior probabilities by Bayesian reasoning. Overall error denotes
the ratio of false predictions to total predictions. The sensi-
tivity versus specificity tradeoff can be controlled by varying
the threshold.

In conclusion, all three engineered kernel functions clearly
outperform the NN as devised by Pedersen and Nielsen or the
Salzberg method by reducing the overall number of misclassifi-
cations drastically: up to 25% compared to the neural network.

Further successful applications of SVMs have emerged in the
context of gene expression profile analysis [26], [27], DNA and
protein analysis [29]–[31].

B. Benchmarks

To evaluate a newly designed algorithm it is often desirable
to have some standardized benchmark data sets. For this pur-
pose there exist several benchmark repositories, including UCI
[142], DELVE [143], and STATLOG [144]. Some of them also
provide results of some standard algorithms on these data sets.
The problems about these repositories and the given results are
as follows:

• it is unclear how the model selection was performed;
• it is not in all cases stated how large the training and test

samples have been;
• usually there is no information how reliable these results

are (error bars);
• the data sometimes needs preprocessing;
• the problems are often multi-class problems,
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TABLE V
COMPARISON[8] BETWEENSVM THE KERNEL FISHER DISCRIMINANT (KFD), A SINGLE RADIAL BASIS FUNCTION CLASSIFIER (RBF), ADABOOST(AB), AND

REGULARIZED ADABOOST(AB ) ON 13 DIFFERENTBENCHMARK DATASETS(SEE TEXT). BEST RESULT IN BOLD FACE, SECONDBEST IN ITALICS

Some of these factors might influence the result of the learning
machine at hand and makes a comparison with results, e.g., in
other papers difficult.

Thus, another (very clean) repository—theIDA repository
[145]—has been created, which contains 13 artificial and
real-world data sets collected from the repositories above. The
IDA repository is designed to cover a variety of different data
sets: from small to high expected error rates, from low- to
high-dimensional data and from small and large sample sizes.
For each of the data setsbanana (toy data set introduced
in [102] and [128]), breast cancer ,16 diabetes,
german, heart, image segment, ringnorm,
flare solar, splice, thyroid, titanic,
twonorm, waveform ), the repository includes

• a short description of the dataset,
• 100 predefined splits into training and test samples,
• the simulation results for several kernel based and

Boosting methods on each split including the parameters
that have been used for each method,

• a simulation summary including means and standard de-
viations on the 100 realizations of the data.

To build the IDA repository for problems that are originally
not binary classification problems, a random partition into two
classes is used.17 Furthermore for all sets preprocessing is per-
formed and 100 different partitions into training and test set
(mostly 60% : 40%) have been generated. On each partition a
set of different classifiers is trained, the best model is selected by
cross-validation and then its test set error is computed. The IDA
repository has been used so far to evaluate kernel and boosting
methods, e.g., in [7], [89], [97], [102], [128]–[130].

In Table V we show experimental comparisons between
SVM, RBF, KFD, and AdaBoost variants [8]. Due to the
careful model selection performed in the experiments, all
kernel-based methods exhibit a similarly good performance.
Note that we can expect such a result since they use similar

16The breast cancer domain was obtained from the University Medical Center,
Inst. of Oncology, Ljubljana, Yugoslavia. Thanks go to M. Zwitter and M. Soklic
for providing the data.

17A random partition generates a mappingm of n to two classes. For this
a random�1 vectorm of lengthn is generated. The positive classes (and the
negative respectively) are then concatenated.

implicit regularization concepts by employing the same kernel
[58]. The remaining differences arise from their different
loss functions which induce different margin optimization
strategies: KFD maximizes the average margin whereas SVM
maximizes the soft margin (ultimately the minimum margin).
In practice, KFD or RVM have the advantage that—if required
(e.g., medical application, motion tracking)—they can also
supply a confidence measures for a decision. Furthermore, the
solutions for KFD with a sparsity regularization are as sparse
as for RVM [91] (i.e., much higher sparsity than for SVMs can
be achieved), yet using an order of magnitude less computing
time than the RVM [89].

1) Miscellaneous Applications:The high-dimensional
problem of text categorization is another application where
SVMs have been performing particularly well. A popular
benchmark is the Reuters-22 173 text corpus, where Reuters
collected 21 450 news stories from 1997, and partitioned and
indexed them into 135 different categories, to simplify the ac-
cess. The feature typically used to classify Reuters documents
are 10 000-dimensional vectors containing word frequencies
within a document. With such a coding SVMs have been
achieving excellent results, see, e.g., [78] and [146].

Further applications of SVM include object and face recog-
nition tasks as well as image retrieval [147] and [148]. SVMs
have also been successfully applied to solve inverse problems
[5], [149].

C. Unsupervised Learning

1) Denoising: Kernel PCA as a nonlinear feature extractor
has proven powerful as a preprocessing step for classification
algorithms. But considering it as a natural generalization of
linear PCA the question arises, how to use nonlinear features for
data compression, reconstruction, and denoising, applications
common in linear PCA. This is a nontrivial task, as the results
provided by kernel PCA live in the high-dimensional feature
space and need not have an exact representation by a single
vector in input space. In practice this issue has been alleviated
by computing approximate preimages [12], [13], [116].

Formally, one defines a projection operator Pwhich for each
test point computes the projection onto the first(nonlinear)
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Fig. 16. Denoising of USPS data (see text). The left half shows:top: the first occurrence of each digit in the test set,second row: the upper digit with additive
Gaussian noise (� = 0:5), following five rows: the reconstruction for linear PCA usingk = 1; 4; 16; 64; 256 components, and,last five rows: the results of the
approximate pre-image approach using the same number of components. The right half shows the same but for “speckle” noise with probabilityp = 0:2 (figure
from [12]).

principal components, i.e.,

P

where k . Let us assume
that the Eigenvectors are ordered with decreasing Eigenvalue
size. It can be shown that these projections have similar opti-
mality properties as linear PCA [12] making them good candi-
dates for the following applications:

Denoising: Given a noisy , map it into , discard
higher components to obtain P , and
then compute a preimage. Here, the hope
is that the main structure in the data set is
captured in the first directions, and the
remaining components mainly pick up the
noise—in this sense,can be thought of as a
denoised version of .

Compression: Given the eigenvectors and a small number
of features of , but not , compute
a preimage as an approximate reconstruction
of . This is useful if is smaller than the
dimensionality of the input data.

Interpretation: Visualize a nonlinear feature extractor by
computing a preimage.

This can be achieved by computing a vectorsatisfying
P . The hope is that for the kernel used, such awill be a
good approximation of in input space. However, 1) such a
will not always exist and 2) if it exists, it need be not unique (cf.
[12] and [13]). When the vector P has no preimage, one

can approximate it by minimizing

P (29)

what can be seen as a special case of the reduced set method
[150], [13]. The optimization of (29) can be formulated using
kernel functions. Especially for RBF kernels [cf. (7)] there exists
an efficient fixed-point iteration. For further details of how to
optimize (29) and for details of the experiments reported below
the reader is referred to [13].

Example: The example shown here (taken from [12]) was
carried out with Gaussian kernels, minimizing (29). Fig. 16 il-
lustrates the preimage approach in an artificial denoising task
on the USPS database. In these experiments, linear and kernel
PCA were trained with the original data. To the test set

1) additive Gaussian noise with zero mean and standard de-
viation or

2) “speckle” noise, where each pixel is flipped to black or
white with probability .

was added. For the noisy test sets, projections onto the first
linear and nonlinear components were computed and the recon-
struction was carried out for each case. The results were com-
pared by taking the mean squared distance of each reconstructed
digit of the noisy test set to its original counterpart.

For the optimal number of components in linear and kernel
PCA, the nonlinear approach did better by a factor of 1.6 for
the Gaussian noise, and 1.2 for the “speckle” noise (the optimal
number of components were 32 in linear PCA, and 512 and 256
in kernel PCA, respectively). Taking identical numbers of com-
ponents in both algorithms, kernel PCA becomes up to eight
times better than linear PCA. Recently, in [116] a similar ap-
proach was used together with sparse kernel PCA on real-world
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images showing far superior performance compared to linear
PCA as well.

Other applications of Kernel PCA can be found in [151] for
object detection, and in [4], [119], and [152] for preprocessing
in regression and classification tasks.

VIII. C ONCLUSION AND DISCUSSION

The goal of the present article was to give a simple introduc-
tion into the exciting field of kernel-based learning methods. We
only briefly touched learning theory and feature spaces—omit-
ting many details of VC theory (e.g., [5])—and instead focused
on how to use and work with the algorithms. In the supervised
learning part, we dealt with classification, however, a similar
reasoning leads to algorithms for regression with KFD (e.g.,
[89]), boosting (e.g., [108]) or SVMs (e.g., [33]).

We proposed a conceptual framework for KFD, boosting and
SVMs as algorithms that essentially differ in how they handle
the high dimensionality of kernel feature spaces. One can
think of boosting as a “kernel algorithm” in a space spanned
by the base hypotheses. The problem becomes only tractable
since boosting uses a -norm regularizer, which induces
sparsity, i.e., we essentially only work in a small subspace. In
SVMs and KFD, on the other hand, we use the kernel trick to
only implicitly work in feature space. The three methods use
different optimization strategies, each well suited to maximize
the (average) margin in the respective feature space and to
achieve sparse solutions.

The unsupervised learning part reviewed 1) kernel PCA, a
nonlinear extension of PCA for finding projections that give
useful nonlinear descriptors of the data and 2) the single-class
SVM algorithm that estimates the support (or, more generally,
quantiles) of a data set and is an elegant approach to the outlier
detection problem in high dimensions. Similar unsupervised
single-class algorithms can also be constructed for boosting
[110] or KFD.

Selected real-world applications served to exemplify that
kernel-based learning algorithms are indeed highly competitive
on a variety of problems with different characteristics.

To conclude, we would like to encourage the reader to follow
the presented methodology of (re-)formulating linear, scalar
product based algorithms into nonlinear algorithms to obtain
further powerful kernel based learning machines.
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